david/ipxe
david
/
ipxe
Archived
1
0
Fork 0

Added a lot of explanatory comments.

Preserves alignment requested via _max_align parameter to linker.
This commit is contained in:
Michael Brown 2005-04-09 13:12:22 +00:00
parent 19176718be
commit 8039086ec8
1 changed files with 131 additions and 49 deletions

View File

@ -1,7 +1,7 @@
#ifndef NORELOCATE #include "virtaddr.h"
#include "etherboot.h"
#include "memsizes.h" #include "memsizes.h"
#include "osdep.h"
#include "etherboot.h"
/* by Eric Biederman */ /* by Eric Biederman */
@ -16,10 +16,37 @@
* *
*/ */
void relocate(void) /*
{ * relocate() must be called without any hardware resources pointing
* at the current copy of Etherboot. The easiest way to achieve this
* is to call relocate() from within arch_initialise(), before the NIC
* gets touched in any way.
*
*/
/*
* The linker passes in the symbol _max_align, which is the alignment
* that we must preserve, in bytes.
*
*/
extern char _max_align[];
#define max_align ( ( unsigned int ) _max_align )
/* Linker symbols */
extern char _text[];
extern char _end[];
#undef DBG
#ifdef DEBUG_RELOCATE
#define DBG(...) printf ( __VA_ARGS__ )
#else
#define DBG(...)
#endif
void relocate ( void ) {
unsigned long addr, eaddr, size; unsigned long addr, eaddr, size;
unsigned i; unsigned i;
/* Walk through the memory map and find the highest address /* Walk through the memory map and find the highest address
* below 4GB that etherboot will fit into. Ensure etherboot * below 4GB that etherboot will fit into. Ensure etherboot
* lies entirely within a range with A20=0. This means that * lies entirely within a range with A20=0. This means that
@ -27,78 +54,133 @@ void relocate(void)
* etherboot code is still visible and we have a chance to * etherboot code is still visible and we have a chance to
* diagnose the problem. * diagnose the problem.
*/ */
/* First find the size of etherboot */
addr = virt_to_phys(_text);
eaddr = virt_to_phys(_end);
size = (eaddr - addr + 0xf) & ~0xf;
/* If the current etherboot is beyond MAX_ADDR pretend it is /* First find the size of etherboot, including enough space to
* at the lowest possible address. * pad it to the required alignment
*/ */
if (eaddr > MAX_ADDR) { size = _end - _text + max_align - 1;
/* Current end address of Etherboot. If the current etherboot
* is beyond MAX_ADDR pretend it is at the lowest possible
* address.
*/
eaddr = virt_to_phys(_end);
if ( eaddr > MAX_ADDR ) {
eaddr = 0; eaddr = 0;
} }
for(i = 0; i < meminfo.map_count; i++) { DBG ( "Relocate: currently at [%x,%x)\n"
"...need %x bytes for %d-byte alignment\n",
virt_to_phys ( _text ), eaddr, size, max_align );
for ( i = 0; i < meminfo.map_count; i++ ) {
unsigned long r_start, r_end; unsigned long r_start, r_end;
DBG ( "Considering [%x%x,%x%x)\n",
( unsigned long ) ( meminfo.map[i].addr >> 32 ),
( unsigned long ) meminfo.map[i].addr,
( unsigned long )
( ( meminfo.map[i].addr + meminfo.map[i].size ) >> 32 ),
( unsigned long )
( meminfo.map[i].addr + meminfo.map[i].size ) );
/* Check block is usable memory */
if (meminfo.map[i].type != E820_RAM) { if (meminfo.map[i].type != E820_RAM) {
DBG ( "...not RAM\n" );
continue; continue;
} }
if (meminfo.map[i].addr > MAX_ADDR) {
continue; /* Truncate block to MAX_ADDR. This will be less than
} * 4GB, which means that we can get away with using
if (meminfo.map[i].size > MAX_ADDR) { * just 32-bit arithmetic after this stage.
*/
if ( meminfo.map[i].addr > MAX_ADDR ) {
DBG ( "...starts after MAX_ADDR=%x\n", MAX_ADDR );
continue; continue;
} }
r_start = meminfo.map[i].addr; r_start = meminfo.map[i].addr;
r_end = r_start + meminfo.map[i].size; if ( meminfo.map[i].addr + meminfo.map[i].size > MAX_ADDR ) {
/* Make the addresses 16 byte (128 bit) aligned */
r_start = (r_start + 15) & ~15;
r_end = r_end & ~15;
if (r_end < r_start) {
r_end = MAX_ADDR; r_end = MAX_ADDR;
DBG ( "...end truncated to MAX_ADDR=%x\n", MAX_ADDR );
} else {
r_end = meminfo.map[i].addr + meminfo.map[i].size;
} }
if (r_end < size) {
/* Avoid overflow weirdness when r_end - size < 0 */
continue;
}
/* Shrink the range down to use only even megabytes /* Shrink the range down to use only even megabytes
* (i.e. A20=0). * (i.e. A20=0).
*/ */
if ( r_end & 0x100000 ) { if ( ( r_end - 1 ) & 0x100000 ) {
/* If r_end is in an odd megabyte, round down /* If last byte that might be used (r_end-1)
* r_end to the top of the next even megabyte. * is in an odd megabyte, round down r_end to
* the top of the next even megabyte.
*/ */
r_end = r_end & ~0xfffff; r_end = ( r_end - 1 ) & ~0xfffff;
DBG ( "...end truncated to %x "
"(avoid ending in odd megabyte)\n",
r_end );
} else if ( ( r_end - size ) & 0x100000 ) { } else if ( ( r_end - size ) & 0x100000 ) {
/* If r_end is in an even megabyte, but the /* If the last byte that might be used
* start of Etherboot would be in an odd * (r_end-1) is in an even megabyte, but the
* megabyte, round down to the top of the next * first byte that might be used (r_end-size)
* even megabyte. * is an odd megabyte, round down to the top
*/ * of the next even megabyte.
r_end = ( r_end - 0x100000 ) & ~0xfffff; *
* Make sure that we don't accidentally wrap
* r_end below 0.
*/
if ( r_end > 0x100000 ) {
r_end = ( r_end - 0x100000 ) & ~0xfffff;
DBG ( "...end truncated to %x "
"(avoid starting in odd megabyte)\n",
r_end );
}
} }
DBG ( "...usable portion is [%x,%x)\n", r_start, r_end );
/* If we have rounded down r_end below r_ start, skip /* If we have rounded down r_end below r_ start, skip
* this block. * this block.
*/ */
if ( r_end < r_start ) { if ( r_end < r_start ) {
DBG ( "...truncated to negative size\n" );
continue; continue;
} }
if (eaddr < r_end - size) {
addr = r_end - size; /* Check that there is enough space to fit in Etherboot */
if ( r_end - r_start < size ) {
DBG ( "...too small (need %x bytes)\n", size );
continue;
}
/* If the start address of the Etherboot we would
* place in this block is higher than the end address
* of the current highest block, use this block.
*
* Note that this avoids overlaps with the current
* Etherboot, as well as choosing the highest of all
* viable blocks.
*/
if ( r_end - size > eaddr ) {
eaddr = r_end; eaddr = r_end;
DBG ( "...new best block found.\n" );
} }
} }
if (addr != virt_to_phys(_text)) {
unsigned long old_addr = virt_to_phys(_text); DBG ( "New location will be in [%x,%x)\n", eaddr - size, eaddr );
printf("Relocating _text from: [%lx,%lx) to [%lx,%lx)\n",
old_addr, virt_to_phys(_end), /* Calculate new location of Etherboot, and align it to the
addr, eaddr); * required alignemnt.
/* arch_relocate_to ( addr ) */ */
cleanup(); addr = eaddr - size;
relocate_to(addr); addr += ( virt_to_phys ( _text ) - addr ) & ( max_align - 1 );
/* arch_relocated_from ( addr ) */ DBG ( "After alignment, new location is [%x,%x)\n",
addr, addr + _end - _text );
if ( addr != virt_to_phys ( _text ) ) {
DBG ( "Relocating _text from: [%lx,%lx) to [%lx,%lx)\n",
virt_to_phys ( _text ), virt_to_phys ( _end ),
addr, addr + _end - _text );
relocate_to ( addr );
} }
} }
#endif /* NORELOCATE */