// --------------------------------------------------------------------------------------------------------------------------------- // // // _ __ ___ _ __ ___ __ _ _ __ ___ _ __ _ __ // | '_ ` _ \| '_ ` _ \ / _` | '__| / __| '_ \| '_ \ // | | | | | | | | | | | (_| | | _ | (__| |_) | |_) | // |_| |_| |_|_| |_| |_|\__, |_| (_) \___| .__/| .__/ // __/ | | | | | // |___/ |_| |_| // // Memory manager & tracking software // // Best viewed with 8-character tabs and (at least) 132 columns // // --------------------------------------------------------------------------------------------------------------------------------- // // Restrictions & freedoms pertaining to usage and redistribution of this software: // // * This software is 100% free // * If you use this software (in part or in whole) you must credit the author. // * This software may not be re-distributed (in part or in whole) in a modified // form without clear documentation on how to obtain a copy of the original work. // * You may not use this software to directly or indirectly cause harm to others. // * This software is provided as-is and without warrantee. Use at your own risk. // // For more information, visit HTTP://www.FluidStudios.com // // --------------------------------------------------------------------------------------------------------------------------------- // Originally created on 12/22/2000 by Paul Nettle // // Copyright 2000, Fluid Studios, Inc., all rights reserved. // --------------------------------------------------------------------------------------------------------------------------------- // // !!IMPORTANT!! // // This software is self-documented with periodic comments. Before you start using this software, perform a search for the string // "-DOC-" to locate pertinent information about how to use this software. // // You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory // tracking software works, so you can better utilize it within your applications. // // NOTES: // // 1. If you get compiler errors having to do with set_new_handler, then go through this source and search/replace // "_handler" with "set_new_handler". // // 2. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We // do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running // under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad. // // 3. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In // order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors. // Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error. // // 4. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this // code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an // example is the use of the class MemStaticTimeTracker.) // // 5. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files. // // 6. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if // you're including standard includes from within your own project inclues; that will break this very specific dependency order. // It should look like this: // // #include // Standard includes MUST come first // #include // // #include // // // #include "mmgr.h" // mmgr.h MUST come next // // #include "myfile1.h" // Project includes MUST come last // #include "myfile2.h" // // #include "myfile3.h" // // // --------------------------------------------------------------------------------------------------------------------------------- //#include "stdafx.h" #include #include #include #include #include #include #include #ifdef CAUDIO_PLATFORM_WIN #include #endif #ifdef CAUDIO_PLATFORM_LINUX #include #endif #include "../Headers/cMemoryManager.h" #include "../include/cAudioDefines.h" // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for // very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking // software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this // software! // // Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To // this end, you are given some very simple debugging tools. // // The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they // occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep // reading... // // If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it // enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT" // into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also // report the name of the routine. // // Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage // the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used // by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard // allocation routines. // // In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is // crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow // in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't // bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the // STRESS_TEST macro (below.) // // If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at // midnight@FluidStudios.com. Before you do, however, check for a newer version at: // // http://www.FluidStudios.com/publications.html // // When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be // cluttered and hard to read. // --------------------------------------------------------------------------------------------------------------------------------- //#define TEST_MEMORY_MANAGER // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs // --------------------------------------------------------------------------------------------------------------------------------- //#define STRESS_TEST // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you // want to test with (0 = none, >100 = all failures). // --------------------------------------------------------------------------------------------------------------------------------- //#define RANDOM_FAILURE 10.0 // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Locals -- modify these flags to suit your needs // --------------------------------------------------------------------------------------------------------------------------------- #ifdef STRESS_TEST static const unsigned int hashBits = 12; static bool randomWipe = true; static bool alwaysValidateAll = true; static bool alwaysLogAll = true; static bool alwaysWipeAll = true; static bool cleanupLogOnFirstRun = true; static const unsigned int paddingSize = 1024; // An extra 8K per allocation! #else static const unsigned int hashBits = 12; static bool randomWipe = false; static bool alwaysValidateAll = false; static bool alwaysLogAll = false; static bool alwaysWipeAll = true; static bool cleanupLogOnFirstRun = true; static const unsigned int paddingSize = 4; #endif // --------------------------------------------------------------------------------------------------------------------------------- // We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert // simply declares a forced breakpoint. // // The BEOS assert added by Arvid Norberg . // --------------------------------------------------------------------------------------------------------------------------------- #ifdef WIN32 #ifdef _DEBUG #define m_assert(x) if ((x) == false) __asm { int 3 } #else #define m_assert(x) {} #endif #elif defined(__BEOS__) #ifdef DEBUG extern void debugger(const char *message); #define m_assert(x) if ((x) == false) debugger("mmgr: assert failed") #else #define m_assert(x) {} #endif #else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program. #define m_assert(cond) assert(cond) #endif // --------------------------------------------------------------------------------------------------------------------------------- // Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.) // appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them. // --------------------------------------------------------------------------------------------------------------------------------- #undef new #undef delete #undef malloc #undef calloc #undef realloc #undef free // --------------------------------------------------------------------------------------------------------------------------------- // Defaults for the constants & statics in the MemoryManager class // --------------------------------------------------------------------------------------------------------------------------------- const unsigned int m_alloc_unknown = 0; const unsigned int m_alloc_new = 1; const unsigned int m_alloc_new_array = 2; const unsigned int m_alloc_malloc = 3; const unsigned int m_alloc_calloc = 4; const unsigned int m_alloc_realloc = 5; const unsigned int m_alloc_delete = 6; const unsigned int m_alloc_delete_array = 7; const unsigned int m_alloc_free = 8; // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM. // --------------------------------------------------------------------------------------------------------------------------------- static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks // --------------------------------------------------------------------------------------------------------------------------------- // Other locals // --------------------------------------------------------------------------------------------------------------------------------- static const unsigned int hashSize = 1 << hashBits; static const char *allocationTypes[] = {"Unknown", "new", "new[]", "malloc", "calloc", "realloc", "delete", "delete[]", "free"}; static sAllocUnit *hashTable[hashSize]; static sAllocUnit *reservoir; static unsigned int currentAllocationCount = 0; static unsigned int breakOnAllocationCount = 0; static sMStats stats; static const char *sourceFile = "??"; static const char *sourceFunc = "??"; static unsigned int sourceLine = 0; static bool staticDeinitTime = false; static sAllocUnit **reservoirBuffer = NULL; static unsigned int reservoirBufferSize = 0; static const char *memoryLogFile = "memory.log"; static const char *memoryLeakLogFile = "memleaks.log"; static void doCleanupLogOnFirstRun(); // --------------------------------------------------------------------------------------------------------------------------------- // Local functions only // --------------------------------------------------------------------------------------------------------------------------------- static void log(const char *format, ...) { #ifdef CAUDIO_USE_MMGR // Cleanup the log? if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun(); // Build the buffer static char buffer[2048]; va_list ap; va_start(ap, format); vsprintf(buffer, format, ap); va_end(ap); // Open the log file FILE *fp = fopen(memoryLogFile, "ab"); // If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some // reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.) m_assert(fp); if (!fp) return; // Spit out the data to the log fprintf(fp, "%s\r\n", buffer); fclose(fp); #endif } // --------------------------------------------------------------------------------------------------------------------------------- static void doCleanupLogOnFirstRun() { if (cleanupLogOnFirstRun) { unlink(memoryLogFile); cleanupLogOnFirstRun = false; // Print a header for the log time_t t = time(NULL); log("--------------------------------------------------------------------------------"); log(""); log(" %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t))); log("--------------------------------------------------------------------------------"); log(""); log("This file contains a log of all memory operations performed during the last run."); log(""); log("Interrogate this file to track errors or to help track down memory-related"); log("issues. You can do this by tracing the allocations performed by a specific owner"); log("or by tracking a specific address through a series of allocations and"); log("reallocations."); log(""); log("There is a lot of useful information here which, when used creatively, can be"); log("extremely helpful."); log(""); log("Note that the following guides are used throughout this file:"); log(""); log(" [!] - Error"); log(" [+] - Allocation"); log(" [~] - Reallocation"); log(" [-] - Deallocation"); log(" [I] - Generic information"); log(" [F] - Failure induced for the purpose of stress-testing your application"); log(" [D] - Information used for debugging this memory manager"); log(""); log("...so, to find all errors in the file, search for \"[!]\""); log(""); log("--------------------------------------------------------------------------------"); } } // --------------------------------------------------------------------------------------------------------------------------------- static const char *sourceFileStripper(const char *sourceFile) { const char *ptr = strrchr(sourceFile, '\\'); if (ptr) return ptr + 1; ptr = strrchr(sourceFile, '/'); if (ptr) return ptr + 1; return sourceFile; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc) { static char str[90]; memset(str, 0, sizeof(str)); sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc); return str; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *insertCommas(unsigned int value) { static char str[30]; memset(str, 0, sizeof(str)); sprintf(str, "%u", value); if (strlen(str) > 3) { memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4); str[strlen(str) - 4] = ','; } if (strlen(str) > 7) { memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8); str[strlen(str) - 8] = ','; } if (strlen(str) > 11) { memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12); str[strlen(str) - 12] = ','; } return str; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *memorySizeString(unsigned long size) { static char str[90]; if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), static_cast(size) / (1024.0f * 1024.0f)); else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), static_cast(size) / 1024.0f); else sprintf(str, "%10s bytes ", insertCommas(size)); return str; } // --------------------------------------------------------------------------------------------------------------------------------- static sAllocUnit *findAllocUnit(const void *reportedAddress) { // Just in case... m_assert(reportedAddress != NULL); // Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated // addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have // very good coverage. unsigned int hashIndex = (reinterpret_cast(const_cast(reportedAddress)) >> 4) & (hashSize - 1); sAllocUnit *ptr = hashTable[hashIndex]; while(ptr) { if (ptr->reportedAddress == reportedAddress) return ptr; ptr = ptr->next; } return NULL; } // --------------------------------------------------------------------------------------------------------------------------------- static size_t calculateActualSize(const size_t reportedSize) { // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's // 8 bytes, which means an int can actually be larger than a long.) return reportedSize + paddingSize * sizeof(long) * 2; } // --------------------------------------------------------------------------------------------------------------------------------- static size_t calculateReportedSize(const size_t actualSize) { // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's // 8 bytes, which means an int can actually be larger than a long.) return actualSize - paddingSize * sizeof(long) * 2; } // --------------------------------------------------------------------------------------------------------------------------------- static void *calculateReportedAddress(const void *actualAddress) { // We allow this... if (!actualAddress) return NULL; // JUst account for the padding return reinterpret_cast(const_cast(reinterpret_cast(actualAddress) + sizeof(long) * paddingSize)); } // --------------------------------------------------------------------------------------------------------------------------------- static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0) { // For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to // crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(), // you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they // can be tracked down easier. if (randomWipe) { pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff); } // -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the // product. So uncomment the following line for releases. // // Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll // leave it this way (as an option) because this does slow things down. // pattern = 0; // This part of the operation is optional if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize) { // Fill the bulk long *lptr = reinterpret_cast(reinterpret_cast(allocUnit->reportedAddress) + originalReportedSize); int length = static_cast(allocUnit->reportedSize - originalReportedSize); int i; for (i = 0; i < (length >> 2); i++, lptr++) { *lptr = pattern; } // Fill the remainder unsigned int shiftCount = 0; char *cptr = reinterpret_cast(lptr); for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8) { *cptr = static_cast((pattern & (0xff << shiftCount)) >> shiftCount); } } // Write in the prefix/postfix bytes long *pre = reinterpret_cast(allocUnit->actualAddress); long *post = reinterpret_cast(reinterpret_cast(allocUnit->actualAddress) + allocUnit->actualSize - paddingSize * sizeof(long)); for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) { *pre = prefixPattern; *post = postfixPattern; } } // --------------------------------------------------------------------------------------------------------------------------------- static void dumpAllocations(FILE *fp) { fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n"); fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n"); fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n"); for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n", ptr->allocationNumber, reinterpret_cast(ptr->reportedAddress), ptr->reportedSize, reinterpret_cast(ptr->actualAddress), ptr->actualSize, m_calcUnused(ptr), allocationTypes[ptr->allocationType], ptr->breakOnDealloc ? 'Y':'N', ptr->breakOnRealloc ? 'Y':'N', ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc)); ptr = ptr->next; } } } // --------------------------------------------------------------------------------------------------------------------------------- static void dumpLeakReport() { #ifdef CAUDIO_USE_MMGR // Open the report file FILE *fp = fopen(memoryLeakLogFile, "w+b"); // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for // some reason.) m_assert(fp); if (!fp) return; // Any leaks? // Header static char timeString[25]; memset(timeString, 0, sizeof(timeString)); time_t t = time(NULL); struct tm *tme = localtime(&t); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "\r\n"); fprintf(fp, "\r\n"); if (stats.totalAllocUnitCount) { fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s"); } else { fprintf(fp, "Congratulations! No memory leaks found!\r\n"); // We can finally free up our own memory allocations if (reservoirBuffer) { for (unsigned int i = 0; i < reservoirBufferSize; i++) { free(reservoirBuffer[i]); } free(reservoirBuffer); reservoirBuffer = 0; reservoirBufferSize = 0; reservoir = NULL; } } fprintf(fp, "\r\n"); if (stats.totalAllocUnitCount) { dumpAllocations(fp); } fclose(fp); #endif } // --------------------------------------------------------------------------------------------------------------------------------- // We use a static class to let us know when we're in the midst of static deinitialization // --------------------------------------------------------------------------------------------------------------------------------- class MemStaticTimeTracker { public: MemStaticTimeTracker() {doCleanupLogOnFirstRun();} ~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();} }; static MemStaticTimeTracker mstt; // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Flags & options -- Call these routines to enable/disable the following options // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysValidateAll() { // Force a validation of all allocation units each time we enter this software return alwaysValidateAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysLogAll() { // Force a log of every allocation & deallocation into memory.log return alwaysLogAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysWipeAll() { // Force this software to always wipe memory with a pattern when it is being allocated/dallocated return alwaysWipeAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_randomeWipe() { // Force this software to use a random pattern when wiping memory -- good for stress testing return randomWipe; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is // reallocated. // --------------------------------------------------------------------------------------------------------------------------------- bool &m_breakOnRealloc(void *reportedAddress) { // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the // stack frame or the variable 'au' to see which allocation this is. m_assert(au != NULL); // If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that // is compatible with reallocation. m_assert(au->allocationType == m_alloc_malloc || au->allocationType == m_alloc_calloc || au->allocationType == m_alloc_realloc); return au->breakOnRealloc; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is // deallocated. // --------------------------------------------------------------------------------------------------------------------------------- bool &m_breakOnDealloc(void *reportedAddress) { // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the // stack frame or the variable 'au' to see which allocation this is. m_assert(au != NULL); return au->breakOnDealloc; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count // --------------------------------------------------------------------------------------------------------------------------------- void m_breakOnAllocation(unsigned int count) { breakOnAllocationCount = count; } // --------------------------------------------------------------------------------------------------------------------------------- // Used by the macros // --------------------------------------------------------------------------------------------------------------------------------- void m_setOwner(const char *file, const unsigned int line, const char *func) { // You're probably wondering about this... // // It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with // no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This // is fine... usually. Here's what actually happens when you use this macro to delete an object: // // m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete // // Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete. // But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another // object? Here's a diagram (indentation follows stack depth): // // m_setOwner(...) -> ~obj1() // original call to delete obj1 // m_setOwner(...) -> ~obj2() // obj1's destructor deletes obj2 // m_setOwner(...) -> ~obj3() // obj2's destructor deletes obj3 // ... // obj3's destructor just does some stuff // delete // back in obj2's destructor, we call delete // delete // back in obj1's destructor, we call delete // delete // back to our original call, we call delete // // Because m_setOwner() just sets up some static variables (below) it's important that each call to m_setOwner() and // successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession // followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that // only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain // will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us. // // "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third- // party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases, // m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the // destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused. // // I've been unable to find a solution to this problem, but at least we can detect it and report the data before we // lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the // information is present... // // There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL. // In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that // there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this // we report a "Possible destructor chain". // // Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out. if (sourceLine && alwaysLogAll) { log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc)); } // Okay... save this stuff off so we can keep track of the caller sourceFile = file; sourceLine = line; sourceFunc = func; } // --------------------------------------------------------------------------------------------------------------------------------- static void resetGlobals() { sourceFile = "??"; sourceLine = 0; sourceFunc = "??"; } // --------------------------------------------------------------------------------------------------------------------------------- // Global new/new[] // // These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our // memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void *operator new(size_t reportedSize) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new"); #endif // Save these off... const char *file = sourceFile; const unsigned int line = sourceLine; const char *func = sourceFunc; // ANSI says: allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. std::new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- void *operator new[](size_t reportedSize) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new[]"); #endif // Save these off... const char *file = sourceFile; const unsigned int line = sourceLine; const char *func = sourceFunc; // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. std::new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- // Other global new/new[] // // These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory // tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use // our memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new"); #endif // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. std::new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new[]"); #endif // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. std::new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- // Global delete/delete[] // // These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[], // but use our memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void operator delete(void *reportedAddress) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: delete"); #endif // ANSI says: delete & delete[] allow NULL pointers (they do nothing) if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress); else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : delete"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- void operator delete[](void *reportedAddress) { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: delete[]"); #endif // ANSI says: delete & delete[] allow NULL pointers (they do nothing) if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress); else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : delete[]"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- // Allocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize) { try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_allocator()"); #endif // Increase our allocation count currentAllocationCount++; // Log the request if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); // If you hit this assert, you requested a breakpoint on a specific allocation count m_assert(currentAllocationCount != breakOnAllocationCount); // If necessary, grow the reservoir of unused allocation units if (!reservoir) { // Allocate 256 reservoir elements reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256); // If you hit this assert, then the memory manager failed to allocate internal memory for tracking the // allocations m_assert(reservoir != NULL); // Danger Will Robinson! if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data"; // Build a linked-list of the elements in our reservoir memset(reservoir, 0, sizeof(sAllocUnit) * 256); for (unsigned int i = 0; i < 256 - 1; i++) { reservoir[i].next = &reservoir[i+1]; } // Add this address to our reservoirBuffer so we can free it later sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *)); m_assert(temp); if (temp) { reservoirBuffer = temp; reservoirBuffer[reservoirBufferSize++] = reservoir; } } // Logical flow says this should never happen... m_assert(reservoir != NULL); // Grab a new allocaton unit from the front of the reservoir sAllocUnit *au = reservoir; reservoir = au->next; // Populate it with some real data memset(au, 0, sizeof(sAllocUnit)); au->actualSize = calculateActualSize(reportedSize); #ifdef RANDOM_FAILURE double a = rand(); double b = RAND_MAX / 100.0 * RANDOM_FAILURE; if (a > b) { au->actualAddress = malloc(au->actualSize); } else { log("[F] Random faiure"); au->actualAddress = NULL; } #else au->actualAddress = malloc(au->actualSize); #endif au->reportedSize = reportedSize; au->reportedAddress = calculateReportedAddress(au->actualAddress); au->allocationType = allocationType; au->sourceLine = sourceLine; au->allocationNumber = currentAllocationCount; if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); else strcpy (au->sourceFile, "??"); if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); else strcpy (au->sourceFunc, "??"); // We don't want to assert with random failures, because we want the application to deal with them. #ifndef RANDOM_FAILURE // If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the // variable 'au' or the stack frame to see what you were trying to do. m_assert(au->actualAddress != NULL); #endif if (au->actualAddress == NULL) { throw "Request for allocation failed. Out of memory."; } // If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking // software, use the stack frame to locate the source and include our H file. m_assert(allocationType != m_alloc_unknown); // Insert the new allocation into the hash table unsigned int hashIndex = (reinterpret_cast(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; au->next = hashTable[hashIndex]; au->prev = NULL; hashTable[hashIndex] = au; // Account for the new allocatin unit in our stats stats.totalReportedMemory += static_cast(au->reportedSize); stats.totalActualMemory += static_cast(au->actualSize); stats.totalAllocUnitCount++; if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount; stats.accumulatedReportedMemory += static_cast(au->reportedSize); stats.accumulatedActualMemory += static_cast(au->actualSize); stats.accumulatedAllocUnitCount++; // Prepare the allocation unit for use (wipe it with recognizable garbage) wipeWithPattern(au, unusedPattern); // calloc() expects the reported memory address range to be filled with 0's if (allocationType == m_alloc_calloc) { memset(au->reportedAddress, 0, au->reportedSize); } // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // Log the result if (alwaysLogAll) log("[+] ----> addr 0x%08X", reinterpret_cast(au->reportedAddress)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Return the (reported) address of the new allocation unit #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_allocator()"); #endif return au->reportedAddress; } catch(const char *err) { // Deal with the errors log("[!] %s", err); resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_allocator()"); #endif return NULL; } } // --------------------------------------------------------------------------------------------------------------------------------- // Reallocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress) { try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_reallocator()"); #endif // Calling realloc with a NULL should force same operations as a malloc if (!reportedAddress) { return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize); } // Increase our allocation count currentAllocationCount++; // If you hit this assert, you requested a breakpoint on a specific allocation count m_assert(currentAllocationCount != breakOnAllocationCount); // Log the request if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager. m_assert(au != NULL); if (au == NULL) throw "Request to reallocate RAM that was never allocated"; // If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably // already know that from a previous assert you should have seen in validateAllocUnit() :) m_assert(m_validateAllocUnit(au)); // If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory // tracking software, use the stack frame to locate the source and include our H file. m_assert(reallocationType != m_alloc_unknown); // If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with // realloc. In other words, you have a allocation/reallocation mismatch. m_assert(au->allocationType == m_alloc_malloc || au->allocationType == m_alloc_calloc || au->allocationType == m_alloc_realloc); // If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be // set until you specifically shut it off. Interrogate the 'au' variable to determine information about this // allocation unit. m_assert(au->breakOnRealloc == false); // Keep track of the original size unsigned int originalReportedSize = static_cast(au->reportedSize); if (alwaysLogAll) log("[~] ----> from 0x%08X(%08d)", originalReportedSize, originalReportedSize); // Do the reallocation void *oldReportedAddress = reportedAddress; size_t newActualSize = calculateActualSize(reportedSize); void *newActualAddress = NULL; #ifdef RANDOM_FAILURE double a = rand(); double b = RAND_MAX / 100.0 * RANDOM_FAILURE; if (a > b) { newActualAddress = realloc(au->actualAddress, newActualSize); } else { log("[F] Random faiure"); } #else newActualAddress = realloc(au->actualAddress, newActualSize); #endif // We don't want to assert with random failures, because we want the application to deal with them. #ifndef RANDOM_FAILURE // If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the // variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory // trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller. m_assert(newActualAddress); #endif if (!newActualAddress) throw "Request for reallocation failed. Out of memory."; // Remove this allocation from our stats (we'll add the new reallocation again later) stats.totalReportedMemory -= static_cast(au->reportedSize); stats.totalActualMemory -= static_cast(au->actualSize); // Update the allocation with the new information au->actualSize = newActualSize; au->actualAddress = newActualAddress; au->reportedSize = calculateReportedSize(newActualSize); au->reportedAddress = calculateReportedAddress(newActualAddress); au->allocationType = reallocationType; au->sourceLine = sourceLine; au->allocationNumber = currentAllocationCount; if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); else strcpy (au->sourceFile, "??"); if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); else strcpy (au->sourceFunc, "??"); // The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table unsigned int hashIndex = static_cast(-1); if (oldReportedAddress != au->reportedAddress) { // Remove this allocation unit from the hash table { unsigned int hashIndex = (reinterpret_cast(oldReportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex] == au) { hashTable[hashIndex] = hashTable[hashIndex]->next; } else { if (au->prev) au->prev->next = au->next; if (au->next) au->next->prev = au->prev; } } // Re-insert it back into the hash table hashIndex = (reinterpret_cast(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; au->next = hashTable[hashIndex]; au->prev = NULL; hashTable[hashIndex] = au; } // Account for the new allocatin unit in our stats stats.totalReportedMemory += static_cast(au->reportedSize); stats.totalActualMemory += static_cast(au->actualSize); if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; int deltaReportedSize = static_cast(reportedSize - originalReportedSize); if (deltaReportedSize > 0) { stats.accumulatedReportedMemory += deltaReportedSize; stats.accumulatedActualMemory += deltaReportedSize; } // Prepare the allocation unit for use (wipe it with recognizable garbage) wipeWithPattern(au, unusedPattern, originalReportedSize); // If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to // the reallocation. This should not happen. m_assert(m_validateAllocUnit(au)); // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // Log the result if (alwaysLogAll) log("[~] ----> addr 0x%08X", reinterpret_cast(au->reportedAddress)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Return the (reported) address of the new allocation unit #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_reallocator()"); #endif return au->reportedAddress; } catch(const char *err) { // Deal with the errors log("[!] %s", err); resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_reallocator()"); #endif return NULL; } } // --------------------------------------------------------------------------------------------------------------------------------- // Deallocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress) { try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_deallocator()"); #endif // Log the request if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X by %s", allocationTypes[deallocationType], reinterpret_cast(const_cast(reportedAddress)), ownerString(sourceFile, sourceLine, sourceFunc)); // We should only ever get here with a null pointer if they try to do so with a call to free() (delete[] and delete will // both bail before they get here.) So, since ANSI allows free(NULL), we'll not bother trying to actually free the allocated // memory or track it any further. if (reportedAddress) { // Go get the allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager. m_assert(au != NULL); if (au == NULL) throw "Request to deallocate RAM that was never allocated"; // If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably // already know that from a previous assert you should have seen in validateAllocUnit() :) m_assert(m_validateAllocUnit(au)); // If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory // tracking software, use the stack frame to locate the source and include our H file. m_assert(deallocationType != m_alloc_unknown); // If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with // the deallocation method requested. In other words, you have a allocation/deallocation mismatch. m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) || (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) || (deallocationType == m_alloc_unknown ) ); // If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au' // variable to determine information about this allocation unit. m_assert(au->breakOnDealloc == false); // Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32, // because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well. wipeWithPattern(au, releasedPattern); // Do the deallocation free(au->actualAddress); // Remove this allocation unit from the hash table unsigned int hashIndex = (reinterpret_cast(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex] == au) { hashTable[hashIndex] = au->next; } else { if (au->prev) au->prev->next = au->next; if (au->next) au->next->prev = au->prev; } // Remove this allocation from our stats stats.totalReportedMemory -= static_cast(au->reportedSize); stats.totalActualMemory -= static_cast(au->actualSize); stats.totalAllocUnitCount--; // Add this allocation unit to the front of our reservoir of unused allocation units memset(au, 0, sizeof(sAllocUnit)); au->next = reservoir; reservoir = au; } // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // If we're in the midst of static deinitialization time, track any pending memory leaks if (staticDeinitTime) dumpLeakReport(); } catch(const char *err) { // Deal with errors log("[!] %s", err); resetGlobals(); } #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_deallocator()"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough // bugs. // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAddress(const void *reportedAddress) { // Just see if the address exists in our allocation routines return findAllocUnit(reportedAddress) != NULL; } // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAllocUnit(const sAllocUnit *allocUnit) { // Make sure the padding is untouched long *pre = reinterpret_cast(allocUnit->actualAddress); long *post = reinterpret_cast((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long)); bool errorFlag = false; for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) { if (*pre != (long) prefixPattern) { log("[!] A memory allocation unit was corrupt because of an underrun:"); m_dumpAllocUnit(allocUnit, " "); errorFlag = true; } // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the // owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the // variable 'allocUnit' to see statistics and information about this damaged allocation unit. m_assert(*pre == static_cast(prefixPattern)); if (*post != static_cast(postfixPattern)) { log("[!] A memory allocation unit was corrupt because of an overrun:"); m_dumpAllocUnit(allocUnit, " "); errorFlag = true; } // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the // owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable // 'allocUnit' to see statistics and information about this damaged allocation unit. m_assert(*post == static_cast(postfixPattern)); } // Return the error status (we invert it, because a return of 'false' means error) return !errorFlag; } // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAllAllocUnits() { // Just go through each allocation unit in the hash table and count the ones that have errors unsigned int errors = 0; unsigned int allocCount = 0; for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { allocCount++; if (!m_validateAllocUnit(ptr)) errors++; ptr = ptr->next; } } // Test for hash-table correctness if (allocCount != stats.totalAllocUnitCount) { log("[!] Memory tracking hash table corrupt!"); errors++; } // If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The // best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the // offending code. After running the application with these settings (and hitting this assert again), interrogate the // memory.log file to find the previous successful operation. The corruption will have occurred between that point and this // assertion. m_assert(allocCount == stats.totalAllocUnitCount); // If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a // prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :) m_assert(errors == 0); // Log any errors if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors); // Return the error status return errors != 0; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes) // --------------------------------------------------------------------------------------------------------------------------------- unsigned int m_calcUnused(const sAllocUnit *allocUnit) { const unsigned long *ptr = reinterpret_cast(allocUnit->reportedAddress); unsigned int count = 0; for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++) { if (*ptr == unusedPattern) count += sizeof(long); } return count; } // --------------------------------------------------------------------------------------------------------------------------------- unsigned int m_calcAllUnused() { // Just go through each allocation unit in the hash table and count the unused RAM unsigned int total = 0; for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { total += m_calcUnused(ptr); ptr = ptr->next; } } return total; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- The following functions are for logging and statistics reporting. // --------------------------------------------------------------------------------------------------------------------------------- void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix) { log("[I] %sAddress (reported): %010p", prefix, allocUnit->reportedAddress); log("[I] %sAddress (actual) : %010p", prefix, allocUnit->actualAddress); log("[I] %sSize (reported) : 0x%08X (%s)", prefix, static_cast(allocUnit->reportedSize), memorySizeString(static_cast(allocUnit->reportedSize))); log("[I] %sSize (actual) : 0x%08X (%s)", prefix, static_cast(allocUnit->actualSize), memorySizeString(static_cast(allocUnit->actualSize))); log("[I] %sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc); log("[I] %sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]); log("[I] %sAllocation number : %d", prefix, allocUnit->allocationNumber); } // --------------------------------------------------------------------------------------------------------------------------------- void m_dumpMemoryReport(const char *filename, const bool overwrite) { // Open the report file FILE *fp = NULL; if (overwrite) fp = fopen(filename, "w+b"); else fp = fopen(filename, "ab"); // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for // some reason.) m_assert(fp); if (!fp) return; // Header static char timeString[25]; memset(timeString, 0, sizeof(timeString)); time_t t = time(NULL); struct tm *tme = localtime(&t); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "\r\n"); fprintf(fp, "\r\n"); // Report summary fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| T O T A L S |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory)); fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory)); fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| P E A K S |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory)); fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory)); fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| A C C U M U L A T E D |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory)); fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| U N U S E D |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused())); fprintf(fp, "\r\n"); dumpAllocations(fp); fclose(fp); } // --------------------------------------------------------------------------------------------------------------------------------- sMStats m_getMemoryStatistics() { return stats; } // --------------------------------------------------------------------------------------------------------------------------------- // mmgr.cpp - End of file // ---------------------------------------------------------------------------------------------------------------------------------