david/ipxe
david
/
ipxe
Archived
1
0
Fork 0
This repository has been archived on 2020-12-06. You can view files and clone it, but cannot push or open issues or pull requests.
ipxe/src/drivers/net/r8169.c

1181 lines
33 KiB
C

/**************************************************************************
* r8169.c: Etherboot device driver for the RealTek RTL-8169 Gigabit
* Written 2003 by Timothy Legge <tlegge@rogers.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Portions of this code based on:
* r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver
* for Linux kernel 2.4.x.
*
* Written 2002 ShuChen <shuchen@realtek.com.tw>
* See Linux Driver for full information
*
* Linux Driver Versions:
* 1.27a, 10.02.2002
* RTL8169_VERSION "2.2" <2004/08/09>
*
* Thanks to:
* Jean Chen of RealTek Semiconductor Corp. for
* providing the evaluation NIC used to develop
* this driver. RealTek's support for Etherboot
* is appreciated.
*
* REVISION HISTORY:
* ================
*
* v1.0 11-26-2003 timlegge Initial port of Linux driver
* v1.5 01-17-2004 timlegge Initial driver output cleanup
* v1.6 03-27-2004 timlegge Additional Cleanup
* v1.7 11-22-2005 timlegge Update to RealTek Driver Version 2.2
*
* Indent Options: indent -kr -i8
***************************************************************************/
/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* to get the PCI support functions, if this is a PCI NIC */
#include <gpxe/pci.h>
#include "timer.h"
#define drv_version "v1.6"
#define drv_date "03-27-2004"
#define HZ 1000
static u32 ioaddr;
#ifdef EDEBUG
#define dprintf(x) printf x
#else
#define dprintf(x)
#endif
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr))
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#undef RTL8169_DEBUG
#undef RTL8169_JUMBO_FRAME_SUPPORT
#undef RTL8169_HW_FLOW_CONTROL_SUPPORT
#undef RTL8169_IOCTL_SUPPORT
#undef RTL8169_DYNAMIC_CONTROL
#define RTL8169_USE_IO
#ifdef RTL8169_DEBUG
#define assert(expr) \
if(!(expr)) { printk( "Assertion failed! %s,%s,%s,line=%d\n", #expr,__FILE__,__FUNCTION__,__LINE__); }
#define DBG_PRINT( fmt, args...) printk("r8169: " fmt, ## args);
#else
#define assert(expr) do {} while (0)
#define DBG_PRINT( fmt, args...) ;
#endif // end of #ifdef RTL8169_DEBUG
/* media options
_10_Half = 0x01,
_10_Full = 0x02,
_100_Half = 0x04,
_100_Full = 0x08,
_1000_Full = 0x10,
*/
static int media = -1;
#if 0
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;
#endif
#if 0
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static int multicast_filter_limit = 32;
#endif
/* MAC address length*/
#define MAC_ADDR_LEN 6
/* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/
#define MAX_ETH_FRAME_SIZE 1536
#define TX_FIFO_THRESH 256 /* In bytes */
#define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */
#define ETTh 0x3F /* 0x3F means NO threshold */
#define EarlyTxThld 0x3F /* 0x3F means NO early transmit */
#define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define NUM_TX_DESC 1 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 4 /* Number of Rx descriptor registers */
#define RX_BUF_SIZE 1536 /* Rx Buffer size */
#define RTL_MIN_IO_SIZE 0x80
#define TX_TIMEOUT (6*HZ)
#define RTL8169_TIMER_EXPIRE_TIME 100 //100
#define ETH_HDR_LEN 14
#define DEFAULT_MTU 1500
#define DEFAULT_RX_BUF_LEN 1536
#ifdef RTL8169_JUMBO_FRAME_SUPPORT
#define MAX_JUMBO_FRAME_MTU ( 10000 )
#define MAX_RX_SKBDATA_SIZE ( MAX_JUMBO_FRAME_MTU + ETH_HDR_LEN )
#else
#define MAX_RX_SKBDATA_SIZE 1600
#endif //end #ifdef RTL8169_JUMBO_FRAME_SUPPORT
#ifdef RTL8169_USE_IO
#define RTL_W8(reg, val8) outb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) outw ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) outl ((val32), ioaddr + (reg))
#define RTL_R8(reg) inb (ioaddr + (reg))
#define RTL_R16(reg) inw (ioaddr + (reg))
#define RTL_R32(reg) ((unsigned long) inl (ioaddr + (reg)))
#else
/* write/read MMIO register */
#define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg))
#define RTL_R8(reg) readb (ioaddr + (reg))
#define RTL_R16(reg) readw (ioaddr + (reg))
#define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg)))
#endif
#define MCFG_METHOD_1 0x01
#define MCFG_METHOD_2 0x02
#define MCFG_METHOD_3 0x03
#define MCFG_METHOD_4 0x04
#define PCFG_METHOD_1 0x01 //PHY Reg 0x03 bit0-3 == 0x0000
#define PCFG_METHOD_2 0x02 //PHY Reg 0x03 bit0-3 == 0x0001
#define PCFG_METHOD_3 0x03 //PHY Reg 0x03 bit0-3 == 0x0002
static struct {
const char *name;
u8 mcfg; /* depend on RTL8169 docs */
u32 RxConfigMask; /* should clear the bits supported by this chip */
} rtl_chip_info[] = {
{
"RTL-8169", MCFG_METHOD_1, 0xff7e1880,}, {
"RTL8169s/8110s", MCFG_METHOD_2, 0xff7e1880}, {
"RTL8169s/8110s", MCFG_METHOD_3, 0xff7e1880},};
enum RTL8169_registers {
MAC0 = 0x0, /* Ethernet hardware address. */
MAR0 = 0x8, /* Multicast filter. */
TxDescStartAddr = 0x20,
TxHDescStartAddr = 0x28,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
RxMissed = 0x4C,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5C,
PHYAR = 0x60,
TBICSR = 0x64,
TBI_ANAR = 0x68,
TBI_LPAR = 0x6A,
PHYstatus = 0x6C,
RxMaxSize = 0xDA,
CPlusCmd = 0xE0,
RxDescStartAddr = 0xE4,
ETThReg = 0xEC,
FuncEvent = 0xF0,
FuncEventMask = 0xF4,
FuncPresetState = 0xF8,
FuncForceEvent = 0xFC,
};
enum RTL8169_register_content {
/*InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x80,
RxFIFOOver = 0x40,
LinkChg = 0x20,
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,
/*RxStatusDesc */
RxRES = 0x00200000,
RxCRC = 0x00080000,
RxRUNT = 0x00100000,
RxRWT = 0x00400000,
/*ChipCmdBits */
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/*Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xC0,
/*rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
/*RxConfigBits */
RxCfgFIFOShift = 13,
RxCfgDMAShift = 8,
/*TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/*rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/*GIGABIT_PHY_registers */
PHY_CTRL_REG = 0,
PHY_STAT_REG = 1,
PHY_AUTO_NEGO_REG = 4,
PHY_1000_CTRL_REG = 9,
/*GIGABIT_PHY_REG_BIT */
PHY_Restart_Auto_Nego = 0x0200,
PHY_Enable_Auto_Nego = 0x1000,
/* PHY_STAT_REG = 1; */
PHY_Auto_Neco_Comp = 0x0020,
/* PHY_AUTO_NEGO_REG = 4; */
PHY_Cap_10_Half = 0x0020,
PHY_Cap_10_Full = 0x0040,
PHY_Cap_100_Half = 0x0080,
PHY_Cap_100_Full = 0x0100,
/* PHY_1000_CTRL_REG = 9; */
PHY_Cap_1000_Full = 0x0200,
PHY_Cap_1000_Half = 0x0100,
PHY_Cap_PAUSE = 0x0400,
PHY_Cap_ASYM_PAUSE = 0x0800,
PHY_Cap_Null = 0x0,
/*_MediaType*/
_10_Half = 0x01,
_10_Full = 0x02,
_100_Half = 0x04,
_100_Full = 0x08,
_1000_Full = 0x10,
/*_TBICSRBit*/
TBILinkOK = 0x02000000,
};
enum _DescStatusBit {
OWNbit = 0x80000000,
EORbit = 0x40000000,
FSbit = 0x20000000,
LSbit = 0x10000000,
};
struct TxDesc {
u32 status;
u32 vlan_tag;
u32 buf_addr;
u32 buf_Haddr;
};
struct RxDesc {
u32 status;
u32 vlan_tag;
u32 buf_addr;
u32 buf_Haddr;
};
/* The descriptors for this card are required to be aligned on 256
* byte boundaries. As the align attribute does not do more than 16
* bytes of alignment it requires some extra steps. Add 256 to the
* size of the array and the init_ring adjusts the alignment.
*
* UPDATE: This is no longer true; we can request arbitrary alignment.
*/
/* Define the TX and RX Descriptors and Buffers */
#define __align_256 __attribute__ (( aligned ( 256 ) ))
struct {
struct TxDesc tx_ring[NUM_TX_DESC] __align_256;
unsigned char txb[NUM_TX_DESC * RX_BUF_SIZE];
struct RxDesc rx_ring[NUM_RX_DESC] __align_256;
unsigned char rxb[NUM_RX_DESC * RX_BUF_SIZE];
} r8169_bufs __shared;
#define tx_ring r8169_bufs.tx_ring
#define rx_ring r8169_bufs.rx_ring
#define txb r8169_bufs.txb
#define rxb r8169_bufs.rxb
static struct rtl8169_private {
void *mmio_addr; /* memory map physical address */
int chipset;
int pcfg;
int mcfg;
unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */
struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */
unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */
unsigned char *Tx_skbuff[NUM_TX_DESC];
} tpx;
static struct rtl8169_private *tpc;
static const u16 rtl8169_intr_mask =
LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK;
static const unsigned int rtl8169_rx_config =
(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift) |
0x0000000E;
static void rtl8169_hw_PHY_config(struct nic *nic __unused);
//static void rtl8169_hw_PHY_reset(struct net_device *dev);
#define RTL8169_WRITE_GMII_REG_BIT( ioaddr, reg, bitnum, bitval )\
{ \
int val; \
if( bitval == 1 ){ val = ( RTL8169_READ_GMII_REG( ioaddr, reg ) | (bitval<<bitnum) ) & 0xffff ; } \
else{ val = ( RTL8169_READ_GMII_REG( ioaddr, reg ) & (~(0x0001<<bitnum)) ) & 0xffff ; } \
RTL8169_WRITE_GMII_REG( ioaddr, reg, val ); \
}
//=================================================================
// PHYAR
// bit Symbol
// 31 Flag
// 30-21 reserved
// 20-16 5-bit GMII/MII register address
// 15-0 16-bit GMII/MII register data
//=================================================================
void RTL8169_WRITE_GMII_REG(unsigned long ioaddr, int RegAddr, int value)
{
int i;
RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);
udelay(1000);
for (i = 2000; i > 0; i--) {
// Check if the RTL8169 has completed writing to the specified MII register
if (!(RTL_R32(PHYAR) & 0x80000000)) {
break;
} else {
udelay(100);
} // end of if( ! (RTL_R32(PHYAR)&0x80000000) )
} // end of for() loop
}
//=================================================================
int RTL8169_READ_GMII_REG(unsigned long ioaddr, int RegAddr)
{
int i, value = -1;
RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);
udelay(1000);
for (i = 2000; i > 0; i--) {
// Check if the RTL8169 has completed retrieving data from the specified MII register
if (RTL_R32(PHYAR) & 0x80000000) {
value = (int) (RTL_R32(PHYAR) & 0xFFFF);
break;
} else {
udelay(100);
} // end of if( RTL_R32(PHYAR) & 0x80000000 )
} // end of for() loop
return value;
}
static void mdio_write(int RegAddr, int value)
{
int i;
RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);
udelay(1000);
for (i = 2000; i > 0; i--) {
/* Check if the RTL8169 has completed writing to the specified MII register */
if (!(RTL_R32(PHYAR) & 0x80000000)) {
break;
} else {
udelay(100);
}
}
}
static int mdio_read(int RegAddr)
{
int i, value = -1;
RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);
udelay(1000);
for (i = 2000; i > 0; i--) {
/* Check if the RTL8169 has completed retrieving data from the specified MII register */
if (RTL_R32(PHYAR) & 0x80000000) {
value = (int) (RTL_R32(PHYAR) & 0xFFFF);
break;
} else {
udelay(100);
}
}
return value;
}
#define IORESOURCE_MEM 0x00000200
static int rtl8169_init_board(struct pci_device *pdev)
{
int i;
unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
adjust_pci_device(pdev);
mmio_start = pci_bar_start(pdev, PCI_BASE_ADDRESS_1);
// mmio_end = pci_resource_end (pdev, 1);
// mmio_flags = pci_resource_flags (pdev, PCI_BASE_ADDRESS_1);
mmio_len = pci_bar_size(pdev, PCI_BASE_ADDRESS_1);
// make sure PCI base addr 1 is MMIO
// if (!(mmio_flags & IORESOURCE_MEM)) {
// printf ("region #1 not an MMIO resource, aborting\n");
// return 0;
// }
// check for weird/broken PCI region reporting
if (mmio_len < RTL_MIN_IO_SIZE) {
printf("Invalid PCI region size(s), aborting\n");
return 0;
}
#ifdef RTL8169_USE_IO
ioaddr = pci_bar_start(pdev, PCI_BASE_ADDRESS_0);
#else
// ioremap MMIO region
ioaddr = (unsigned long) ioremap(mmio_start, mmio_len);
if (ioaddr == 0) {
printk("cannot remap MMIO, aborting\n");
return 0;
}
#endif
tpc->mmio_addr = &ioaddr;
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--)
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
else
udelay(10);
// identify config method
{
unsigned long val32 = (RTL_R32(TxConfig) & 0x7c800000);
if (val32 == (0x1 << 28)) {
tpc->mcfg = MCFG_METHOD_4;
} else if (val32 == (0x1 << 26)) {
tpc->mcfg = MCFG_METHOD_3;
} else if (val32 == (0x1 << 23)) {
tpc->mcfg = MCFG_METHOD_2;
} else if (val32 == 0x00000000) {
tpc->mcfg = MCFG_METHOD_1;
} else {
tpc->mcfg = MCFG_METHOD_1;
}
}
{
unsigned char val8 =
(unsigned char) (RTL8169_READ_GMII_REG(ioaddr, 3) &
0x000f);
if (val8 == 0x00) {
tpc->pcfg = PCFG_METHOD_1;
} else if (val8 == 0x01) {
tpc->pcfg = PCFG_METHOD_2;
} else if (val8 == 0x02) {
tpc->pcfg = PCFG_METHOD_3;
} else {
tpc->pcfg = PCFG_METHOD_3;
}
}
/* identify chip attached to board */
for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--)
if (tpc->mcfg == rtl_chip_info[i].mcfg) {
tpc->chipset = i;
goto match;
}
/* if unknown chip, assume array element #0, original RTL-8169 in this case */
dprintf(("PCI device: unknown chip version, assuming RTL-8169\n"));
dprintf(("PCI device: TxConfig = 0x%hX\n",
(unsigned long) RTL_R32(TxConfig)));
tpc->chipset = 0;
return 1;
match:
return 0;
}
/**************************************************************************
IRQ - Wait for a frame
***************************************************************************/
static void r8169_irq(struct nic *nic __unused, irq_action_t action)
{
int intr_status = 0;
int interested = RxOverflow | RxFIFOOver | RxErr | RxOK;
switch (action) {
case DISABLE:
case ENABLE:
intr_status = RTL_R16(IntrStatus);
/* h/w no longer present (hotplug?) or major error,
bail */
if (intr_status == 0xFFFF)
break;
intr_status = intr_status & ~interested;
if (action == ENABLE)
intr_status = intr_status | interested;
RTL_W16(IntrMask, intr_status);
break;
case FORCE:
RTL_W8(TxPoll, (RTL_R8(TxPoll) | 0x01));
break;
}
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int r8169_poll(struct nic *nic, int retreive)
{
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
int cur_rx;
unsigned int intr_status = 0;
cur_rx = tpc->cur_rx;
if ((tpc->RxDescArray[cur_rx].status & OWNbit) == 0) {
/* There is a packet ready */
if (!retreive)
return 1;
intr_status = RTL_R16(IntrStatus);
/* h/w no longer present (hotplug?) or major error,
bail */
if (intr_status == 0xFFFF)
return 0;
RTL_W16(IntrStatus, intr_status &
~(RxFIFOOver | RxOverflow | RxOK));
if (!(tpc->RxDescArray[cur_rx].status & RxRES)) {
nic->packetlen = (int) (tpc->RxDescArray[cur_rx].
status & 0x00001FFF) - 4;
memcpy(nic->packet, tpc->RxBufferRing[cur_rx],
nic->packetlen);
if (cur_rx == NUM_RX_DESC - 1)
tpc->RxDescArray[cur_rx].status =
(OWNbit | EORbit) + RX_BUF_SIZE;
else
tpc->RxDescArray[cur_rx].status =
OWNbit + RX_BUF_SIZE;
tpc->RxDescArray[cur_rx].buf_addr =
virt_to_bus(tpc->RxBufferRing[cur_rx]);
} else
printf("Error Rx");
/* FIXME: shouldn't I reset the status on an error */
cur_rx = (cur_rx + 1) % NUM_RX_DESC;
tpc->cur_rx = cur_rx;
RTL_W16(IntrStatus, intr_status &
(RxFIFOOver | RxOverflow | RxOK));
return 1;
}
tpc->cur_rx = cur_rx;
/* FIXME: There is no reason to do this as cur_rx did not change */
return (0); /* initially as this is called to flush the input */
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void r8169_transmit(struct nic *nic, const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p)
{ /* Packet */
/* send the packet to destination */
u16 nstype;
u32 to;
u8 *ptxb;
int entry = tpc->cur_tx % NUM_TX_DESC;
/* point to the current txb incase multiple tx_rings are used */
ptxb = tpc->Tx_skbuff[entry * MAX_ETH_FRAME_SIZE];
memcpy(ptxb, d, ETH_ALEN);
memcpy(ptxb + ETH_ALEN, nic->node_addr, ETH_ALEN);
nstype = htons((u16) t);
memcpy(ptxb + 2 * ETH_ALEN, (u8 *) & nstype, 2);
memcpy(ptxb + ETH_HLEN, p, s);
s += ETH_HLEN;
s &= 0x0FFF;
while (s < ETH_ZLEN)
ptxb[s++] = '\0';
tpc->TxDescArray[entry].buf_addr = virt_to_bus(ptxb);
if (entry != (NUM_TX_DESC - 1))
tpc->TxDescArray[entry].status =
(OWNbit | FSbit | LSbit) | ((s > ETH_ZLEN) ? s :
ETH_ZLEN);
else
tpc->TxDescArray[entry].status =
(OWNbit | EORbit | FSbit | LSbit) | ((s > ETH_ZLEN) ? s
: ETH_ZLEN);
RTL_W8(TxPoll, 0x40); /* set polling bit */
tpc->cur_tx++;
to = currticks() + TX_TIMEOUT;
while ((tpc->TxDescArray[entry].status & OWNbit) && (currticks() < to)); /* wait */
if (currticks() >= to) {
printf("TX Time Out");
}
}
static void rtl8169_set_rx_mode(struct nic *nic __unused)
{
u32 mc_filter[2]; /* Multicast hash filter */
int rx_mode;
u32 tmp = 0;
/* IFF_ALLMULTI */
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
tmp =
rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) &
rtl_chip_info[tpc->chipset].
RxConfigMask);
RTL_W32(RxConfig, tmp);
RTL_W32(MAR0 + 0, mc_filter[0]);
RTL_W32(MAR0 + 4, mc_filter[1]);
}
static void rtl8169_hw_start(struct nic *nic)
{
u32 i;
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--) {
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
else
udelay(10);
}
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(ETThReg, ETTh);
/* For gigabit rtl8169 */
RTL_W16(RxMaxSize, RxPacketMaxSize);
/* Set Rx Config register */
i = rtl8169_rx_config | (RTL_R32(RxConfig) &
rtl_chip_info[tpc->chipset].RxConfigMask);
RTL_W32(RxConfig, i);
/* Set DMA burst size and Interframe Gap Time */
RTL_W32(TxConfig,
(TX_DMA_BURST << TxDMAShift) | (InterFrameGap <<
TxInterFrameGapShift));
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd));
if (tpc->mcfg == MCFG_METHOD_2 || tpc->mcfg == MCFG_METHOD_3) {
RTL_W16(CPlusCmd,
(RTL_R16(CPlusCmd) | (1 << 14) | (1 << 3)));
DBG_PRINT
("Set MAC Reg C+CR Offset 0xE0: bit-3 and bit-14\n");
} else {
RTL_W16(CPlusCmd, (RTL_R16(CPlusCmd) | (1 << 3)));
DBG_PRINT("Set MAC Reg C+CR Offset 0xE0: bit-3.\n");
}
{
//RTL_W16(0xE2, 0x1517);
//RTL_W16(0xE2, 0x152a);
//RTL_W16(0xE2, 0x282a);
RTL_W16(0xE2, 0x0000);
}
tpc->cur_rx = 0;
RTL_W32(TxDescStartAddr, virt_to_le32desc(tpc->TxDescArray));
RTL_W32(RxDescStartAddr, virt_to_le32desc(tpc->RxDescArray));
RTL_W8(Cfg9346, Cfg9346_Lock);
udelay(10);
RTL_W32(RxMissed, 0);
rtl8169_set_rx_mode(nic);
/* no early-rx interrupts */
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
RTL_W16(IntrMask, rtl8169_intr_mask);
}
static void rtl8169_init_ring(struct nic *nic __unused)
{
int i;
tpc->cur_rx = 0;
tpc->cur_tx = 0;
memset(tpc->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc));
memset(tpc->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc));
for (i = 0; i < NUM_TX_DESC; i++) {
tpc->Tx_skbuff[i] = &txb[i];
}
for (i = 0; i < NUM_RX_DESC; i++) {
if (i == (NUM_RX_DESC - 1))
tpc->RxDescArray[i].status =
(OWNbit | EORbit) | RX_BUF_SIZE;
else
tpc->RxDescArray[i].status = OWNbit | RX_BUF_SIZE;
tpc->RxBufferRing[i] = &rxb[i * RX_BUF_SIZE];
tpc->RxDescArray[i].buf_addr =
virt_to_bus(tpc->RxBufferRing[i]);
}
}
/**************************************************************************
RESET - Finish setting up the ethernet interface
***************************************************************************/
static void r8169_reset(struct nic *nic)
{
int i;
tpc->TxDescArray = tx_ring;
tpc->RxDescArray = rx_ring;
rtl8169_init_ring(nic);
rtl8169_hw_start(nic);
/* Construct a perfect filter frame with the mac address as first match
* and broadcast for all others */
for (i = 0; i < 192; i++)
txb[i] = 0xFF;
txb[0] = nic->node_addr[0];
txb[1] = nic->node_addr[1];
txb[2] = nic->node_addr[2];
txb[3] = nic->node_addr[3];
txb[4] = nic->node_addr[4];
txb[5] = nic->node_addr[5];
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void r8169_disable ( struct nic *nic __unused ) {
int i;
/* Stop the chip's Tx and Rx DMA processes. */
RTL_W8(ChipCmd, 0x00);
/* Disable interrupts by clearing the interrupt mask. */
RTL_W16(IntrMask, 0x0000);
RTL_W32(RxMissed, 0);
tpc->TxDescArray = NULL;
tpc->RxDescArray = NULL;
for (i = 0; i < NUM_RX_DESC; i++) {
tpc->RxBufferRing[i] = NULL;
}
}
static struct nic_operations r8169_operations = {
.connect = dummy_connect,
.poll = r8169_poll,
.transmit = r8169_transmit,
.irq = r8169_irq,
};
static struct pci_id r8169_nics[] = {
PCI_ROM(0x10ec, 0x8169, "r8169", "RealTek RTL8169 Gigabit Ethernet"),
PCI_ROM(0x16ec, 0x0116, "usr-r8169", "US Robotics RTL8169 Gigabit Ethernet"),
PCI_ROM(0x1186, 0x4300, "dlink-r8169", "D-Link RTL8169 Gigabit Ethernet"),
};
PCI_DRIVER ( r8169_driver, r8169_nics, PCI_NO_CLASS );
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
#define board_found 1
#define valid_link 0
static int r8169_probe ( struct nic *nic, struct pci_device *pci ) {
static int board_idx = -1;
static int printed_version = 0;
int i, rc;
int option = -1, Cap10_100 = 0, Cap1000 = 0;
printf("r8169.c: Found %s, Vendor=%hX Device=%hX\n",
pci->name, pci->vendor_id, pci->device_id);
board_idx++;
printed_version = 1;
/* point to private storage */
tpc = &tpx;
rc = rtl8169_init_board(pci); /* Return code is meaningless */
/* Get MAC address. FIXME: read EEPROM */
for (i = 0; i < MAC_ADDR_LEN; i++)
nic->node_addr[i] = RTL_R8(MAC0 + i);
dprintf(("%s: Identified chip type is '%s'.\n", pci->name,
rtl_chip_info[tpc->chipset].name));
/* Print out some hardware info */
printf("%s: %! at ioaddr %hX, ", pci->name, nic->node_addr,
ioaddr);
// Config PHY
rtl8169_hw_PHY_config(nic);
DBG_PRINT("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
if (tpc->mcfg < MCFG_METHOD_3) {
DBG_PRINT("Set PCI Latency=0x40\n");
pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0x40);
}
if (tpc->mcfg == MCFG_METHOD_2) {
DBG_PRINT("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
DBG_PRINT("Set PHY Reg 0x0bh = 0x00h\n");
RTL8169_WRITE_GMII_REG(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
}
/* if TBI is not endbled */
if (!(RTL_R8(PHYstatus) & TBI_Enable)) {
int val = RTL8169_READ_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG);
#ifdef RTL8169_HW_FLOW_CONTROL_SUPPORT
val |= PHY_Cap_PAUSE | PHY_Cap_ASYM_PAUSE;
#endif //end #define RTL8169_HW_FLOW_CONTROL_SUPPORT
option = media;
/* Force RTL8169 in 10/100/1000 Full/Half mode. */
if (option > 0) {
printf(" Force-mode Enabled.\n");
Cap10_100 = 0, Cap1000 = 0;
switch (option) {
case _10_Half:
Cap10_100 = PHY_Cap_10_Half;
Cap1000 = PHY_Cap_Null;
break;
case _10_Full:
Cap10_100 = PHY_Cap_10_Full;
Cap1000 = PHY_Cap_Null;
break;
case _100_Half:
Cap10_100 = PHY_Cap_100_Half;
Cap1000 = PHY_Cap_Null;
break;
case _100_Full:
Cap10_100 = PHY_Cap_100_Full;
Cap1000 = PHY_Cap_Null;
break;
case _1000_Full:
Cap10_100 = PHY_Cap_Null;
Cap1000 = PHY_Cap_1000_Full;
break;
default:
break;
}
RTL8169_WRITE_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0xC1F)); //leave PHY_AUTO_NEGO_REG bit4:0 unchanged
RTL8169_WRITE_GMII_REG(ioaddr, PHY_1000_CTRL_REG,
Cap1000);
} else {
dprintf(("Auto-negotiation Enabled.\n",
pci->name));
// enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged
RTL8169_WRITE_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG,
PHY_Cap_10_Half |
PHY_Cap_10_Full |
PHY_Cap_100_Half |
PHY_Cap_100_Full | (val &
0xC1F));
// enable 1000 Full Mode
// RTL8169_WRITE_GMII_REG( ioaddr, PHY_1000_CTRL_REG, PHY_Cap_1000_Full );
RTL8169_WRITE_GMII_REG(ioaddr, PHY_1000_CTRL_REG, PHY_Cap_1000_Full | PHY_Cap_1000_Half); //rtl8168
} // end of if( option > 0 )
// Enable auto-negotiation and restart auto-nigotiation
RTL8169_WRITE_GMII_REG(ioaddr, PHY_CTRL_REG,
PHY_Enable_Auto_Nego |
PHY_Restart_Auto_Nego);
udelay(100);
// wait for auto-negotiation process
for (i = 10000; i > 0; i--) {
//check if auto-negotiation complete
if (RTL8169_READ_GMII_REG(ioaddr, PHY_STAT_REG) &
PHY_Auto_Neco_Comp) {
udelay(100);
option = RTL_R8(PHYstatus);
if (option & _1000bpsF) {
printf
("1000Mbps Full-duplex operation.\n");
} else {
printf
("%sMbps %s-duplex operation.\n",
(option & _100bps) ? "100" :
"10",
(option & FullDup) ? "Full" :
"Half");
}
break;
} else {
udelay(100);
} // end of if( RTL8169_READ_GMII_REG(ioaddr, 1) & 0x20 )
} // end for-loop to wait for auto-negotiation process
} else {
udelay(100);
printf
("%s: 1000Mbps Full-duplex operation, TBI Link %s!\n",
pci->name,
(RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed");
}
r8169_reset(nic);
/* point to NIC specific routines */
nic->nic_op = &r8169_operations;
pci_fill_nic ( nic, pci );
nic->irqno = pci->irq;
nic->ioaddr = ioaddr;
return 1;
}
//======================================================================================================
/*
static void rtl8169_hw_PHY_reset(struct nic *nic __unused)
{
int val, phy_reset_expiretime = 50;
struct rtl8169_private *priv = dev->priv;
unsigned long ioaddr = priv->ioaddr;
DBG_PRINT("%s: Reset RTL8169s PHY\n", dev->name);
val = ( RTL8169_READ_GMII_REG( ioaddr, 0 ) | 0x8000 ) & 0xffff;
RTL8169_WRITE_GMII_REG( ioaddr, 0, val );
do //waiting for phy reset
{
if( RTL8169_READ_GMII_REG( ioaddr, 0 ) & 0x8000 ){
phy_reset_expiretime --;
udelay(100);
}
else{
break;
}
}while( phy_reset_expiretime >= 0 );
assert( phy_reset_expiretime > 0 );
}
*/
//======================================================================================================
static void rtl8169_hw_PHY_config(struct nic *nic __unused)
{
DBG_PRINT("priv->mcfg=%d, priv->pcfg=%d\n", tpc->mcfg, tpc->pcfg);
if (tpc->mcfg == MCFG_METHOD_4) {
/*
RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0001 );
RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1b, 0x841e );
RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x0e, 0x7bfb );
RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x09, 0x273a );
*/
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F,
0x0002);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0x90D0);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F,
0x0000);
} else if ((tpc->mcfg == MCFG_METHOD_2)
|| (tpc->mcfg == MCFG_METHOD_3)) {
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F,
0x0001);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x15,
0x1000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x18,
0x65C7);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x0000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03,
0x00A1);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02,
0x0008);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0x1020);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00,
0x1000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x0800);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x0000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x7000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03,
0xFF41);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02,
0xDE60);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0x0140);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00,
0x0077);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x7800);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x7000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xA000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03,
0xDF01);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02,
0xDF20);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0xFF95);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00,
0xFA00);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xA800);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xA000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xB000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03,
0xFF41);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02,
0xDE20);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0x0140);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00,
0x00BB);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xB800);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xB000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xF000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03,
0xDF01);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02,
0xDF20);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01,
0xFF95);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00,
0xBF00);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xF800);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0xF000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04,
0x0000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F,
0x0000);
RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x0B,
0x0000);
} else {
DBG_PRINT("tpc->mcfg=%d. Discard hw PHY config.\n",
tpc->mcfg);
}
}
DRIVER ( "r8169/PCI", nic_driver, pci_driver, r8169_driver,
r8169_probe, r8169_disable );