david/ipxe
david
/
ipxe
Archived
1
0
Fork 0
This repository has been archived on 2020-12-06. You can view files and clone it, but cannot push or open issues or pull requests.
ipxe/src/drivers/net/vxge/vxge_traffic.c

739 lines
20 KiB
C

/*
* vxge-traffic.c: iPXE driver for Neterion Inc's X3100 Series 10GbE
* PCIe I/O Virtualized Server Adapter.
*
* Copyright(c) 2002-2010 Neterion Inc.
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by
* reference. Drivers based on or derived from this code fall under
* the GPL and must retain the authorship, copyright and license
* notice.
*
*/
FILE_LICENCE(GPL2_ONLY);
#include <ipxe/netdevice.h>
#include <errno.h>
#include "vxge_traffic.h"
#include "vxge_config.h"
#include "vxge_main.h"
/*
* vxge_hw_vpath_intr_enable - Enable vpath interrupts.
* @vpath: Virtual Path handle.
*
* Enable vpath interrupts. The function is to be executed the last in
* vpath initialization sequence.
*
* See also: vxge_hw_vpath_intr_disable()
*/
enum vxge_hw_status
vxge_hw_vpath_intr_enable(struct __vxge_hw_virtualpath *vpath)
{
struct vxge_hw_vpath_reg *vp_reg;
enum vxge_hw_status status = VXGE_HW_OK;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
vp_reg = vpath->vp_reg;
writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->general_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_ppif_int_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->prc_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->wrdma_alarm_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->xgmac_vp_int_status);
readq(&vp_reg->vpath_general_int_status);
/* Mask unwanted interrupts */
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_mask);
/* Unmask the individual interrupts */
writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
&vp_reg->general_errors_mask);
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
&vp_reg->kdfcctl_errors_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
&vp_reg->prc_alarm_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
if (vpath->hldev->first_vp_id != vpath->vp_id)
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_mask);
else
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT|
VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK),
0, 32), &vp_reg->asic_ntwk_vp_err_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_general_int_mask);
exit:
return status;
}
/*
* vxge_hw_vpath_intr_disable - Disable vpath interrupts.
* @vpath: Virtual Path handle.
*
* Disable vpath interrupts. The function is to be executed the last in
* vpath initialization sequence.
*
* See also: vxge_hw_vpath_intr_enable()
*/
enum vxge_hw_status
vxge_hw_vpath_intr_disable(struct __vxge_hw_virtualpath *vpath)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
vp_reg = vpath->vp_reg;
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_general_int_mask);
writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->general_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_ppif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->wrdma_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->prc_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->xgmac_vp_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_mask);
exit:
return status;
}
/**
* vxge_hw_device_mask_all - Mask all device interrupts.
* @hldev: HW device handle.
*
* Mask all device interrupts.
*
* See also: vxge_hw_device_unmask_all()
*/
void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
{
u64 val64;
val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->titan_mask_all_int);
return;
}
/**
* vxge_hw_device_unmask_all - Unmask all device interrupts.
* @hldev: HW device handle.
*
* Unmask all device interrupts.
*
* See also: vxge_hw_device_mask_all()
*/
void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
{
u64 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->titan_mask_all_int);
return;
}
/**
* vxge_hw_device_intr_enable - Enable interrupts.
* @hldev: HW device handle.
*
* Enable Titan interrupts. The function is to be executed the last in
* Titan initialization sequence.
*
* See also: vxge_hw_device_intr_disable()
*/
void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
{
u64 val64;
u32 val32;
vxge_hw_device_mask_all(hldev);
vxge_hw_vpath_intr_enable(&hldev->virtual_path);
val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
if (val64 != 0) {
writeq(val64, &hldev->common_reg->tim_int_status0);
writeq(~val64, &hldev->common_reg->tim_int_mask0);
}
val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
if (val32 != 0) {
__vxge_hw_pio_mem_write32_upper(val32,
&hldev->common_reg->tim_int_status1);
__vxge_hw_pio_mem_write32_upper(~val32,
&hldev->common_reg->tim_int_mask1);
}
val64 = readq(&hldev->common_reg->titan_general_int_status);
/* We have not enabled the top level interrupt yet.
* This will be controlled from vxge_irq() entry api.
*/
return;
}
/**
* vxge_hw_device_intr_disable - Disable Titan interrupts.
* @hldev: HW device handle.
*
* Disable Titan interrupts.
*
* See also: vxge_hw_device_intr_enable()
*/
void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
{
vxge_hw_device_mask_all(hldev);
/* mask all the tim interrupts */
writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
&hldev->common_reg->tim_int_mask1);
vxge_hw_vpath_intr_disable(&hldev->virtual_path);
return;
}
/**
* vxge_hw_ring_rxd_post - Post descriptor on the ring.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
*
* Post descriptor on the ring.
* Prior to posting the descriptor should be filled in accordance with
* Host/Titan interface specification for a given service (LL, etc.).
*/
void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring __unused,
struct vxge_hw_ring_rxd_1 *rxdp)
{
rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
}
/**
* __vxge_hw_non_offload_db_post - Post non offload doorbell
*
* @fifo: fifohandle
* @txdl_ptr: The starting location of the TxDL in host memory
* @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
*
* This function posts a non-offload doorbell to doorbell FIFO
*
*/
static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
u64 txdl_ptr, u32 num_txds)
{
writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds),
&fifo->nofl_db->control_0);
wmb();
writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
wmb();
}
/**
* vxge_hw_fifo_free_txdl_get: fetch next available txd in the fifo
*
* @fifo: tx channel handle
*/
struct vxge_hw_fifo_txd *
vxge_hw_fifo_free_txdl_get(struct __vxge_hw_fifo *fifo)
{
struct vxge_hw_fifo_txd *txdp;
txdp = fifo->txdl + fifo->sw_offset;
if (txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER) {
vxge_debug(VXGE_ERR, "%s:%d, error: txd(%d) owned by hw\n",
__func__, __LINE__, fifo->sw_offset);
return NULL;
}
return txdp;
}
/**
* vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
* descriptor.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor handle.
* @iob: data buffer.
*/
void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
struct vxge_hw_fifo_txd *txdp,
struct io_buffer *iob)
{
txdp->control_0 = VXGE_HW_FIFO_TXD_GATHER_CODE(
VXGE_HW_FIFO_GATHER_CODE_FIRST_LAST);
txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(iob_len(iob));
txdp->control_1 = VXGE_HW_FIFO_TXD_INT_NUMBER(fifo->tx_intr_num);
txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
txdp->host_control = (intptr_t)iob;
txdp->buffer_pointer = virt_to_bus(iob->data);
}
/**
* vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
* @fifo: Handle to the fifo object used for non offload send
* @txdp: Tx Descriptor
*
* Post descriptor on the 'fifo' type channel for transmission.
* Prior to posting the descriptor should be filled in accordance with
* Host/Titan interface specification for a given service (LL, etc.).
*
*/
void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo,
struct vxge_hw_fifo_txd *txdp)
{
txdp->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
__vxge_hw_non_offload_db_post(fifo, (u64) virt_to_bus(txdp), 0);
vxge_hw_fifo_txd_offset_up(&fifo->sw_offset);
}
/*
* __vxge_hw_vpath_alarm_process - Process Alarms.
* @vpath: Virtual Path.
* @skip_alarms: Do not clear the alarms
*
* Process vpath alarms.
*
*/
static enum vxge_hw_status __vxge_hw_vpath_alarm_process(
struct __vxge_hw_virtualpath *vpath)
{
u64 val64;
u64 alarm_status;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_device *hldev = NULL;
struct vxge_hw_vpath_reg *vp_reg;
hldev = vpath->hldev;
vp_reg = vpath->vp_reg;
alarm_status = readq(&vp_reg->vpath_general_int_status);
if (alarm_status == VXGE_HW_ALL_FOXES) {
vxge_debug(VXGE_ERR, "%s: %s:%d, slot freeze error\n",
hldev->ndev->name, __func__, __LINE__);
status = VXGE_HW_ERR_SLOT_FREEZE;
goto out;
}
if (alarm_status & ~(
VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
vxge_debug(VXGE_ERR, "%s: %s:%d, Unknown vpath alarm\n",
hldev->ndev->name, __func__, __LINE__);
status = VXGE_HW_FAIL;
goto out;
}
if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
val64 = readq(&vp_reg->xgmac_vp_int_status);
if (val64 &
VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
if (((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
&& (!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
))) {
writeq(VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
&vp_reg->asic_ntwk_vp_err_mask);
netdev_link_down(hldev->ndev);
vxge_debug(VXGE_INTR, "%s: %s:%d link down\n",
hldev->ndev->name, __func__, __LINE__);
}
if (((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
&& (!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
))) {
writeq(VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
&vp_reg->asic_ntwk_vp_err_mask);
netdev_link_up(hldev->ndev);
vxge_debug(VXGE_INTR, "%s: %s:%d link up\n",
hldev->ndev->name, __func__, __LINE__);
}
writeq(VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_reg);
}
} else {
vxge_debug(VXGE_INFO, "%s: %s:%d unhandled alarm %llx\n",
hldev->ndev->name, __func__, __LINE__,
alarm_status);
}
out:
return status;
}
/**
* vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
* condition that has caused the Tx and RX interrupt.
* @hldev: HW device.
*
* Acknowledge (that is, clear) the condition that has caused
* the Tx and Rx interrupt.
* See also: vxge_hw_device_begin_irq(),
* vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
*/
void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
{
if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
(hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
&hldev->common_reg->tim_int_status0);
}
if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
__vxge_hw_pio_mem_write32_upper(
(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
&hldev->common_reg->tim_int_status1);
}
return;
}
/**
* vxge_hw_device_begin_irq - Begin IRQ processing.
* @hldev: HW device handle.
*
* The function performs two actions, It first checks whether (shared IRQ) the
* interrupt was raised by the device. Next, it masks the device interrupts.
*
* Note:
* vxge_hw_device_begin_irq() does not flush MMIO writes through the
* bridge. Therefore, two back-to-back interrupts are potentially possible.
*
* Returns: 0, if the interrupt is not "ours" (note that in this case the
* device remain enabled).
* Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
* status.
*/
enum vxge_hw_status
vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev)
{
u64 val64;
u64 adapter_status;
u64 vpath_mask;
enum vxge_hw_status ret = VXGE_HW_OK;
val64 = readq(&hldev->common_reg->titan_general_int_status);
if (!val64) {
ret = VXGE_HW_ERR_WRONG_IRQ;
goto exit;
}
if (val64 == VXGE_HW_ALL_FOXES) {
adapter_status = readq(&hldev->common_reg->adapter_status);
if (adapter_status == VXGE_HW_ALL_FOXES) {
vxge_debug(VXGE_ERR, "%s: %s:%d critical error "
"occurred\n", hldev->ndev->name,
__func__, __LINE__);
ret = VXGE_HW_ERR_SLOT_FREEZE;
goto exit;
}
}
vpath_mask = hldev->vpaths_deployed >>
(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
if (val64 & VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(
vpath_mask))
vxge_hw_device_clear_tx_rx(hldev);
if (val64 & VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)
ret = __vxge_hw_vpath_alarm_process(&hldev->virtual_path);
exit:
return ret;
}
/**
* vxge_hw_vpath_doorbell_rx - Indicates to hw the qwords of receive
* descriptors posted.
* @ring: Handle to the ring object used for receive
*
* The function writes the number of qwords of rxds posted during replishment.
* Since the function is called frequently, a flush is not required to post the
* write transaction. At the very least, the previous write will be flushed
* once the subsequent write is made.
*
* Returns: None.
*/
void vxge_hw_vpath_doorbell_rx(struct __vxge_hw_ring *ring)
{
u32 rxds_qw_per_block = VXGE_HW_MAX_RXDS_PER_BLOCK_1 *
VXGE_HW_RING_RXD_QWORDS_MODE_1;
ring->doorbell_cnt += VXGE_HW_RING_RXD_QWORDS_MODE_1;
ring->total_db_cnt += VXGE_HW_RING_RXD_QWORDS_MODE_1;
if (ring->total_db_cnt >= rxds_qw_per_block) {
/* For each block add 4 more qwords */
ring->doorbell_cnt += VXGE_HW_RING_RXD_QWORDS_MODE_1;
/* Reset total count */
ring->total_db_cnt -= rxds_qw_per_block;
}
if (ring->doorbell_cnt >= ring->rxd_qword_limit) {
wmb();
writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(
ring->doorbell_cnt),
&ring->vp_reg->prc_rxd_doorbell);
ring->doorbell_cnt = 0;
}
}
/**
* vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
* descriptors and process the same.
* @ring: Handle to the ring object used for receive
*
* The function polls the Rx for the completed descriptors.
*/
#define ETH_FCS_LEN 4
enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
{
struct __vxge_hw_device *hldev;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_ring_rxd_1 *rxd;
unsigned int len;
enum vxge_hw_ring_tcode tcode;
struct io_buffer *rx_iob, *iobuf = NULL;
u16 poll_count = 0;
hldev = ring->vpathh->hldev;
do {
rxd = &ring->rxdl->rxd[ring->rxd_offset];
tcode = VXGE_HW_RING_RXD_T_CODE_GET(rxd->control_0);
/* if tcode is VXGE_HW_RING_T_CODE_FRM_DROP, it is
* possible the ownership bit still set to adapter
*/
if ((rxd->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)
&& (tcode == VXGE_HW_RING_T_CODE_OK)) {
status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
goto err0;
}
vxge_debug(VXGE_INFO, "%s: rx frame received at offset %d\n",
hldev->ndev->name, ring->rxd_offset);
iobuf = (struct io_buffer *)(intptr_t)rxd->host_control;
if (tcode != VXGE_HW_RING_T_CODE_OK) {
netdev_rx_err(hldev->ndev, NULL, -EINVAL);
vxge_debug(VXGE_ERR, "%s:%d, rx error tcode %d\n",
__func__, __LINE__, tcode);
status = VXGE_HW_FAIL;
goto err1;
}
len = VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(rxd->control_1);
len -= ETH_FCS_LEN;
rx_iob = alloc_iob(len);
if (!rx_iob) {
netdev_rx_err(hldev->ndev, NULL, -ENOMEM);
vxge_debug(VXGE_ERR, "%s:%d, alloc_iob error\n",
__func__, __LINE__);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto err1;
}
memcpy(iob_put(rx_iob, len), iobuf->data, len);
/* Add this packet to the receive queue. */
netdev_rx(hldev->ndev, rx_iob);
err1:
/* repost the rxd */
rxd->control_0 = rxd->control_1 = 0;
vxge_hw_ring_rxd_1b_set(rxd, iobuf,
VXGE_LL_MAX_FRAME_SIZE(hldev->vdev));
vxge_hw_ring_rxd_post(ring, rxd);
/* repost the qword count for doorbell */
vxge_hw_vpath_doorbell_rx(ring);
/* increment the descriptor offset */
vxge_hw_ring_rxd_offset_up(&ring->rxd_offset);
} while (++poll_count < ring->rx_poll_weight);
err0:
return status;
}
/**
* vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
* the same.
* @fifo: Handle to the fifo object used for non offload send
*
* The function polls the Tx for the completed descriptors and calls
* the driver via supplied completion callback.
*/
enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_fifo_txd *txdp;
txdp = fifo->txdl + fifo->hw_offset;
if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)
&& (txdp->host_control)) {
vxge_xmit_compl(fifo, txdp,
VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0));
vxge_hw_fifo_txd_offset_up(&fifo->hw_offset);
}
return status;
}