david/ipxe
Archived
1
0
This repository has been archived on 2020-12-06. You can view files and clone it, but cannot push or open issues or pull requests.
ipxe/src/interface/pxe/pxe.c
Michael Brown 809933d9f7 Split PXE code into preboot, udp, tftp, undi and loader units.
PXE code now compiles without errors (though it won't actually work).
2005-05-23 23:32:56 +00:00

312 lines
9.3 KiB
C

/** @file
*
*
*
*/
/*
* Copyright (C) 2004 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "pxe.h"
/* Global pointer to currently installed PXE stack */
pxe_stack_t *pxe_stack = NULL;
/* Various startup/shutdown routines. The startup/shutdown call
* sequence is incredibly badly defined in the Intel PXE spec, for
* example:
*
* PXENV_UNDI_INITIALIZE says that the parameters used to initialize
* the adaptor should be those supplied to the most recent
* PXENV_UNDI_STARTUP call. PXENV_UNDI_STARTUP takes no parameters.
*
* PXENV_UNDI_CLEANUP says that the rest of the API will not be
* available after making this call. Figure 3-3 ("Early UNDI API
* usage") shows a call to PXENV_UNDI_CLEANUP being followed by a
* call to the supposedly now unavailable PXENV_STOP_UNDI.
*
* PXENV_UNLOAD_BASE_STACK talks about freeing up the memory
* occupied by the PXE stack. Figure 4-3 ("PXE IPL") shows a call
* to PXENV_STOP_UNDI being made after the call to
* PXENV_UNLOAD_BASE_STACK, by which time the entire PXE stack
* should have been freed (and, potentially, zeroed).
*
* Nothing, anywhere, seems to mention who's responsible for freeing
* up the base memory allocated for the stack segment. It's not
* even clear whether or not this is expected to be in free base
* memory rather than claimed base memory.
*
* Consequently, we adopt a rather defensive strategy, designed to
* work with any conceivable sequence of initialisation or shutdown
* calls. We have only two things that we care about:
*
* 1. Have we hooked INT 1A and INT 15,E820(etc.)?
* 2. Is the NIC initialised?
*
* The NIC should never be initialised without the vectors being
* hooked, similarly the vectors should never be unhooked with the NIC
* still initialised. We do, however, want to be able to have the
* vectors hooked with the NIC shutdown. We therefore have three
* possible states:
*
* 1. Ready to unload: interrupts unhooked, NIC shutdown.
* 2. Midway: interrupts hooked, NIC shutdown.
* 3. Fully ready: interrupts hooked, NIC initialised.
*
* We provide the three states CAN_UNLOAD, MIDWAY and READY to define
* these, and the call pxe_ensure_state() to ensure that the stack is
* in the specified state. All our PXE API call implementations
* should use this call to ensure that the state is as required for
* that PXE API call. This enables us to cope with whatever the
* end-user's interpretation of the PXE spec may be. It even allows
* for someone calling e.g. PXENV_START_UNDI followed by
* PXENV_UDP_WRITE, without bothering with any of the intervening
* calls.
*
* pxe_ensure_state() returns 1 for success, 0 for failure. In the
* event of failure (which can arise from e.g. asking for state READY
* when we don't know where our NIC is), the error code
* PXENV_STATUS_UNDI_INVALID_STATE should be returned to the user.
* The macros ENSURE_XXX() can be used to achieve this without lots of
* duplicated code.
*/
/* pxe_[un]hook_stack are architecture-specific and provided in
* pxe_callbacks.c
*/
int pxe_initialise_nic ( void ) {
if ( pxe_stack->state >= READY ) return 1;
#warning "device probing mechanism has completely changed"
#if 0
/* Check if NIC is initialised. dev.disable is set to 0
* when disable() is called, so we use this.
*/
if ( dev.disable ) {
/* NIC may have been initialised independently
* (e.g. when we set up the stack prior to calling the
* NBP).
*/
pxe_stack->state = READY;
return 1;
}
/* If we already have a NIC defined, reuse that one with
* PROBE_AWAKE. If one was specifed via PXENV_START_UNDI, try
* that one first. Otherwise, set PROBE_FIRST.
*/
if ( dev.state.pci.dev.use_specified == 1 ) {
dev.how_probe = PROBE_NEXT;
DBG ( " initialising NIC specified via START_UNDI" );
} else if ( dev.state.pci.dev.driver ) {
DBG ( " reinitialising NIC" );
dev.how_probe = PROBE_AWAKE;
} else {
DBG ( " probing for any NIC" );
dev.how_probe = PROBE_FIRST;
}
/* Call probe routine to bring up the NIC */
if ( eth_probe ( &dev ) != PROBE_WORKED ) {
DBG ( " failed" );
return 0;
}
#endif
pxe_stack->state = READY;
return 1;
}
int pxe_shutdown_nic ( void ) {
if ( pxe_stack->state <= MIDWAY ) return 1;
eth_irq ( DISABLE );
disable ( &dev );
pxe_stack->state = MIDWAY;
return 1;
}
int ensure_pxe_state ( pxe_stack_state_t wanted ) {
int success = 1;
if ( ! pxe_stack ) return 0;
if ( wanted >= MIDWAY )
success = success & hook_pxe_stack();
if ( wanted > MIDWAY ) {
success = success & pxe_initialise_nic();
} else {
success = success & pxe_shutdown_nic();
}
if ( wanted < MIDWAY )
success = success & unhook_pxe_stack();
return success;
}
/* API call dispatcher
*
* Status: complete
*/
PXENV_EXIT_t pxe_api_call ( int opcode, union u_PXENV_ANY *any ) {
PXENV_EXIT_t ret = PXENV_EXIT_FAILURE;
/* Set default status in case child routine fails to do so */
any->Status = PXENV_STATUS_FAILURE;
DBG ( "[" );
/* Hand off to relevant API routine */
switch ( opcode ) {
case PXENV_START_UNDI:
ret = pxenv_start_undi ( &any->start_undi );
break;
case PXENV_UNDI_STARTUP:
ret = pxenv_undi_startup ( &any->undi_startup );
break;
case PXENV_UNDI_CLEANUP:
ret = pxenv_undi_cleanup ( &any->undi_cleanup );
break;
case PXENV_UNDI_INITIALIZE:
ret = pxenv_undi_initialize ( &any->undi_initialize );
break;
case PXENV_UNDI_RESET_ADAPTER:
ret = pxenv_undi_reset_adapter ( &any->undi_reset_adapter );
break;
case PXENV_UNDI_SHUTDOWN:
ret = pxenv_undi_shutdown ( &any->undi_shutdown );
break;
case PXENV_UNDI_OPEN:
ret = pxenv_undi_open ( &any->undi_open );
break;
case PXENV_UNDI_CLOSE:
ret = pxenv_undi_close ( &any->undi_close );
break;
case PXENV_UNDI_TRANSMIT:
ret = pxenv_undi_transmit ( &any->undi_transmit );
break;
case PXENV_UNDI_SET_MCAST_ADDRESS:
ret = pxenv_undi_set_mcast_address (
&any->undi_set_mcast_address );
break;
case PXENV_UNDI_SET_STATION_ADDRESS:
ret = pxenv_undi_set_station_address (
&any->undi_set_station_address );
break;
case PXENV_UNDI_SET_PACKET_FILTER:
ret = pxenv_undi_set_packet_filter (
&any->undi_set_packet_filter );
break;
case PXENV_UNDI_GET_INFORMATION:
ret = pxenv_undi_get_information (
&any->undi_get_information );
break;
case PXENV_UNDI_GET_STATISTICS:
ret = pxenv_undi_get_statistics ( &any->undi_get_statistics );
break;
case PXENV_UNDI_CLEAR_STATISTICS:
ret = pxenv_undi_clear_statistics (
&any->undi_clear_statistics );
break;
case PXENV_UNDI_INITIATE_DIAGS:
ret = pxenv_undi_initiate_diags ( &any->undi_initiate_diags );
break;
case PXENV_UNDI_FORCE_INTERRUPT:
ret = pxenv_undi_force_interrupt (
&any->undi_force_interrupt );
break;
case PXENV_UNDI_GET_MCAST_ADDRESS:
ret = pxenv_undi_get_mcast_address (
&any->undi_get_mcast_address );
break;
case PXENV_UNDI_GET_NIC_TYPE:
ret = pxenv_undi_get_nic_type ( &any->undi_get_nic_type );
break;
case PXENV_UNDI_GET_IFACE_INFO:
ret = pxenv_undi_get_iface_info ( &any->undi_get_iface_info );
break;
case PXENV_UNDI_ISR:
ret = pxenv_undi_isr ( &any->undi_isr );
break;
case PXENV_STOP_UNDI:
ret = pxenv_stop_undi ( &any->stop_undi );
break;
case PXENV_TFTP_OPEN:
ret = pxenv_tftp_open ( &any->tftp_open );
break;
case PXENV_TFTP_CLOSE:
ret = pxenv_tftp_close ( &any->tftp_close );
break;
case PXENV_TFTP_READ:
ret = pxenv_tftp_read ( &any->tftp_read );
break;
case PXENV_TFTP_READ_FILE:
ret = pxenv_tftp_read_file ( &any->tftp_read_file );
break;
case PXENV_TFTP_GET_FSIZE:
ret = pxenv_tftp_get_fsize ( &any->tftp_get_fsize );
break;
case PXENV_UDP_OPEN:
ret = pxenv_udp_open ( &any->udp_open );
break;
case PXENV_UDP_CLOSE:
ret = pxenv_udp_close ( &any->udp_close );
break;
case PXENV_UDP_READ:
ret = pxenv_udp_read ( &any->udp_read );
break;
case PXENV_UDP_WRITE:
ret = pxenv_udp_write ( &any->udp_write );
break;
case PXENV_UNLOAD_STACK:
ret = pxenv_unload_stack ( &any->unload_stack );
break;
case PXENV_GET_CACHED_INFO:
ret = pxenv_get_cached_info ( &any->get_cached_info );
break;
case PXENV_RESTART_TFTP:
ret = pxenv_restart_tftp ( &any->restart_tftp );
break;
case PXENV_START_BASE:
ret = pxenv_start_base ( &any->start_base );
break;
case PXENV_STOP_BASE:
ret = pxenv_stop_base ( &any->stop_base );
break;
default:
DBG ( "PXENV_UNKNOWN_%hx", opcode );
any->Status = PXENV_STATUS_UNSUPPORTED;
ret = PXENV_EXIT_FAILURE;
break;
}
if ( any->Status != PXENV_STATUS_SUCCESS ) {
DBG ( " %hx", any->Status );
}
if ( ret != PXENV_EXIT_SUCCESS ) {
DBG ( ret == PXENV_EXIT_FAILURE ? " err" : " ??" );
}
DBG ( "]" );
return ret;
}