#include #include #include #include #include #include #include #include #include #include #include #include #include #include "uip/uip.h" #include /** @file * * IPv4 protocol * * The gPXE IP stack is currently implemented on top of the uIP * protocol stack. This file provides wrappers around uIP so that * higher-level protocol implementations do not need to talk directly * to uIP (which has a somewhat baroque API). * */ struct net_protocol ipv4_protocol; /** An IPv4 address/routing table entry */ struct ipv4_miniroute { /** List of miniroutes */ struct list_head list; /** Network device */ struct net_device *netdev; /** IPv4 address */ struct in_addr address; /** Subnet mask */ struct in_addr netmask; /** Gateway address */ struct in_addr gateway; }; /** List of IPv4 miniroutes */ static LIST_HEAD ( miniroutes ); /** * Add IPv4 interface * * @v netdev Network device * @v address IPv4 address * @v netmask Subnet mask * @v gateway Gateway address (or @c INADDR_NONE for no gateway) * @ret rc Return status code * */ int add_ipv4_address ( struct net_device *netdev, struct in_addr address, struct in_addr netmask, struct in_addr gateway ) { struct ipv4_miniroute *miniroute; /* Allocate and populate miniroute structure */ miniroute = malloc ( sizeof ( *miniroute ) ); if ( ! miniroute ) return -ENOMEM; miniroute->netdev = netdev; miniroute->address = address; miniroute->netmask = netmask; miniroute->gateway = gateway; /* Add to end of list if we have a gateway, otherwise to start * of list. */ if ( gateway.s_addr != INADDR_NONE ) { list_add_tail ( &miniroute->list, &miniroutes ); } else { list_add ( &miniroute->list, &miniroutes ); } return 0; } /** * Remove IPv4 interface * * @v netdev Network device */ void del_ipv4_address ( struct net_device *netdev ) { struct ipv4_miniroute *miniroute; list_for_each_entry ( miniroute, &miniroutes, list ) { if ( miniroute->netdev == netdev ) { list_del ( &miniroute->list ); break; } } } /** * Transmit packet constructed by uIP * * @v pkb Packet buffer * @ret rc Return status code * */ int ipv4_uip_transmit ( struct pk_buff *pkb ) { struct iphdr *iphdr = pkb->data; struct ipv4_miniroute *miniroute; struct net_device *netdev = NULL; struct in_addr next_hop; struct in_addr source; uint8_t ll_dest_buf[MAX_LL_ADDR_LEN]; const uint8_t *ll_dest = ll_dest_buf; int rc; /* Use routing table to identify next hop and transmitting netdev */ next_hop = iphdr->dest; list_for_each_entry ( miniroute, &miniroutes, list ) { if ( ( ( ( iphdr->dest.s_addr ^ miniroute->address.s_addr ) & miniroute->netmask.s_addr ) == 0 ) || ( miniroute->gateway.s_addr != INADDR_NONE ) ) { netdev = miniroute->netdev; source = miniroute->address; if ( miniroute->gateway.s_addr != INADDR_NONE ) next_hop = miniroute->gateway; break; } } /* Abort if no network device identified */ if ( ! netdev ) { DBG ( "No route to %s\n", inet_ntoa ( iphdr->dest ) ); rc = -EHOSTUNREACH; goto err; } /* Determine link-layer destination address */ if ( next_hop.s_addr == INADDR_BROADCAST ) { /* Broadcast address */ ll_dest = netdev->ll_protocol->ll_broadcast; } else if ( IN_MULTICAST ( next_hop.s_addr ) ) { /* Special case: IPv4 multicast over Ethernet. This * code may need to be generalised once we find out * what happens for other link layers. */ uint8_t *next_hop_bytes = ( uint8_t * ) &next_hop; ll_dest_buf[0] = 0x01; ll_dest_buf[0] = 0x00; ll_dest_buf[0] = 0x5e; ll_dest_buf[3] = next_hop_bytes[1] & 0x7f; ll_dest_buf[4] = next_hop_bytes[2]; ll_dest_buf[5] = next_hop_bytes[3]; } else { /* Unicast address: resolve via ARP */ if ( ( rc = arp_resolve ( netdev, &ipv4_protocol, &next_hop, &source, ll_dest_buf ) ) != 0 ) { DBG ( "No ARP entry for %s\n", inet_ntoa ( iphdr->dest ) ); goto err; } } /* Hand off to link layer */ return net_transmit ( pkb, netdev, &ipv4_protocol, ll_dest ); err: free_pkb ( pkb ); return rc; } /** * Process incoming IP packets * * @v pkb Packet buffer * @ret rc Return status code * * This handles IP packets by handing them off to the uIP protocol * stack. */ static int ipv4_rx ( struct pk_buff *pkb ) { /* Transfer to uIP buffer. Horrendously space-inefficient, * but will do as a proof-of-concept for now. */ uip_len = pkb_len ( pkb ); memcpy ( uip_buf, pkb->data, uip_len ); free_pkb ( pkb ); /* Hand to uIP for processing */ uip_input (); if ( uip_len > 0 ) { pkb = alloc_pkb ( MAX_LL_HEADER_LEN + uip_len ); if ( ! pkb ) return -ENOMEM; pkb_reserve ( pkb, MAX_LL_HEADER_LEN ); memcpy ( pkb_put ( pkb, uip_len ), uip_buf, uip_len ); ipv4_uip_transmit ( pkb ); } return 0; } /** * Convert IPv4 address to dotted-quad notation * * @v in IP address * @ret string IP address in dotted-quad notation */ char * inet_ntoa ( struct in_addr in ) { static char buf[16]; /* "xxx.xxx.xxx.xxx" */ uint8_t *bytes = ( uint8_t * ) ∈ sprintf ( buf, "%d.%d.%d.%d", bytes[0], bytes[1], bytes[2], bytes[3] ); return buf; } /** * Transcribe IP address * * @v net_addr IP address * @ret string IP address in dotted-quad notation * */ static const char * ipv4_ntoa ( const void *net_addr ) { return inet_ntoa ( * ( ( struct in_addr * ) net_addr ) ); } /** IPv4 protocol */ struct net_protocol ipv4_protocol = { .name = "IP", .net_proto = htons ( ETH_P_IP ), .net_addr_len = sizeof ( struct in_addr ), .rx_process = ipv4_rx, .ntoa = ipv4_ntoa, }; NET_PROTOCOL ( ipv4_protocol ); /** IPv4 address for the static single net device */ struct net_address static_single_ipv4_address = { .net_protocol = &ipv4_protocol, #warning "Remove this static-IP hack" .net_addr = { 0x0a, 0xfe, 0xfe, 0x01 }, }; STATIC_SINGLE_NETDEV_ADDRESS ( static_single_ipv4_address );