From de329a36d0e41eac22608eb93da787564d7b1bfe Mon Sep 17 00:00:00 2001 From: Michael Brown Date: Wed, 21 Nov 2007 15:37:58 +0000 Subject: [PATCH] Removed old e1000 driver. --- src/drivers/net/e1000-old/e1000.c | 3742 -------------------------- src/drivers/net/e1000-old/e1000_hw.h | 2058 -------------- 2 files changed, 5800 deletions(-) delete mode 100644 src/drivers/net/e1000-old/e1000.c delete mode 100644 src/drivers/net/e1000-old/e1000_hw.h diff --git a/src/drivers/net/e1000-old/e1000.c b/src/drivers/net/e1000-old/e1000.c deleted file mode 100644 index 8f8d3dba..00000000 --- a/src/drivers/net/e1000-old/e1000.c +++ /dev/null @@ -1,3742 +0,0 @@ -/************************************************************************** -Etherboot - BOOTP/TFTP Bootstrap Program -Inter Pro 1000 for Etherboot -Drivers are port from Intel's Linux driver e1000-4.3.15 - -***************************************************************************/ -/******************************************************************************* - - - Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. - - This program is free software; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published by the Free - Software Foundation; either version 2 of the License, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., 59 - Temple Place - Suite 330, Boston, MA 02111-1307, USA. - - The full GNU General Public License is included in this distribution in the - file called LICENSE. - - Contact Information: - Linux NICS - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ -/* - * Copyright (C) Archway Digital Solutions. - * - * written by Chrsitopher Li or - * 2/9/2002 - * - * Copyright (C) Linux Networx. - * Massive upgrade to work with the new intel gigabit NICs. - * - * - * Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by - * Georg Baum , sponsored by PetaMem GmbH and linkLINE Communications, Inc. - * - * 01/2004: Updated to Linux driver 5.2.22 by Georg Baum - */ - -/* to get some global routines like printf */ -#include "etherboot.h" -/* to get the interface to the body of the program */ -#include "nic.h" -/* to get the PCI support functions, if this is a PCI NIC */ -#include -#include "timer.h" - -typedef unsigned char *dma_addr_t; - -typedef enum { - FALSE = 0, - TRUE = 1 -} boolean_t; - -#define DEBUG 0 - - -/* Some pieces of code are disabled with #if 0 ... #endif. - * They are not deleted to show where the etherboot driver differs - * from the linux driver below the function level. - * Some member variables of the hw struct have been eliminated - * and the corresponding inplace checks inserted instead. - * Pieces such as LED handling that we definitely don't need are deleted. - * - * Please keep the function ordering so that it is easy to produce diffs - * against the linux driver. - * - * The following defines should not be needed normally, - * but may be helpful for debugging purposes. */ - -/* Define this if you want to program the transmission control register - * the way the Linux driver does it. */ -#undef LINUX_DRIVER_TCTL - -/* Define this to behave more like the Linux driver. */ -#undef LINUX_DRIVER - -#include "e1000_hw.h" - -/* NIC specific static variables go here */ -static struct nic_operations e1000_operations; - -static struct e1000_hw hw; - -struct { - char tx_pool[128 + 16]; - char rx_pool[128 + 16]; - char packet[2096]; -} e1000_bufs __shared; - -static struct e1000_tx_desc *tx_base; -static struct e1000_rx_desc *rx_base; - -static int tx_tail; -static int rx_tail, rx_last; - -/* Function forward declarations */ -static int e1000_setup_link(struct e1000_hw *hw); -static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw); -static int e1000_setup_copper_link(struct e1000_hw *hw); -static int e1000_phy_setup_autoneg(struct e1000_hw *hw); -static void e1000_config_collision_dist(struct e1000_hw *hw); -static int e1000_config_mac_to_phy(struct e1000_hw *hw); -static int e1000_config_fc_after_link_up(struct e1000_hw *hw); -static int e1000_check_for_link(struct e1000_hw *hw); -static int e1000_wait_autoneg(struct e1000_hw *hw); -static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex); -static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); -static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); -static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data); -static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data); -static void e1000_phy_hw_reset(struct e1000_hw *hw); -static int e1000_phy_reset(struct e1000_hw *hw); -static int e1000_detect_gig_phy(struct e1000_hw *hw); -static int e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static void e1000_init_rx_addrs(struct e1000_hw *hw); -static void e1000_clear_vfta(struct e1000_hw *hw); - -/* Printing macros... */ - -#define E1000_ERR(args...) printf("e1000: " args) - -#if DEBUG >= 3 -#define E1000_DBG(args...) printf("e1000: " args) -#else -#define E1000_DBG(args...) -#endif - -#define MSGOUT(S, A, B) printk(S "\n", A, B) -#if DEBUG >= 2 -#define DEBUGFUNC(F) DEBUGOUT(F "\n"); -#else -#define DEBUGFUNC(F) -#endif -#if DEBUG >= 1 -#define DEBUGOUT(S) printf(S) -#define DEBUGOUT1(S,A) printf(S,A) -#define DEBUGOUT2(S,A,B) printf(S,A,B) -#define DEBUGOUT3(S,A,B,C) printf(S,A,B,C) -#define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G) -#else -#define DEBUGOUT(S) -#define DEBUGOUT1(S,A) -#define DEBUGOUT2(S,A,B) -#define DEBUGOUT3(S,A,B,C) -#define DEBUGOUT7(S,A,B,C,D,E,F,G) -#endif - -#define E1000_WRITE_REG(a, reg, value) ( \ - ((a)->mac_type >= e1000_82543) ? \ - (writel((value), ((a)->hw_addr + E1000_##reg))) : \ - (writel((value), ((a)->hw_addr + E1000_82542_##reg)))) - -#define E1000_READ_REG(a, reg) ( \ - ((a)->mac_type >= e1000_82543) ? \ - readl((a)->hw_addr + E1000_##reg) : \ - readl((a)->hw_addr + E1000_82542_##reg)) - -#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ - ((a)->mac_type >= e1000_82543) ? \ - writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \ - writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))) - -#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ - ((a)->mac_type >= e1000_82543) ? \ - readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \ - readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))) - -#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} - - -/****************************************************************************** - * Inline functions from e1000_main.c of the linux driver - ******************************************************************************/ - -#if 0 -static inline uint32_t -e1000_io_read(struct e1000_hw *hw __unused, uint32_t port) -{ - return inl(port); -} -#endif - -static inline void -e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value) -{ - outl(value, port); -} - -static inline void e1000_pci_set_mwi(struct e1000_hw *hw) -{ - pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); -} - -static inline void e1000_pci_clear_mwi(struct e1000_hw *hw) -{ - pci_write_config_word(hw->pdev, PCI_COMMAND, - hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); -} - - -/****************************************************************************** - * Inline functions from e1000_hw.c of the linux driver - ******************************************************************************/ - -/****************************************************************************** -* Writes a value to one of the devices registers using port I/O (as opposed to -* memory mapped I/O). Only 82544 and newer devices support port I/O. * -* hw - Struct containing variables accessed by shared code -* offset - offset to write to * value - value to write -*****************************************************************************/ -static inline void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, - uint32_t value){ - e1000_io_write(hw, hw->io_base, offset); - e1000_io_write(hw, hw->io_base + 4, value); -} - - -/****************************************************************************** - * Functions from e1000_hw.c of the linux driver - ******************************************************************************/ - -/****************************************************************************** - * Set the phy type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_set_phy_type(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_set_phy_type"); - - switch(hw->phy_id) { - case M88E1000_E_PHY_ID: - case M88E1000_I_PHY_ID: - case M88E1011_I_PHY_ID: - hw->phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: - hw->phy_type = e1000_phy_igp; - break; - default: - /* Should never have loaded on this device */ - hw->phy_type = e1000_phy_undefined; - return -E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * IGP phy init script - initializes the GbE PHY - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_phy_init_script(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_phy_init_script"); - -#if 0 - /* See e1000_sw_init() of the Linux driver */ - if(hw->phy_init_script) { -#else - if((hw->mac_type == e1000_82541) || - (hw->mac_type == e1000_82547) || - (hw->mac_type == e1000_82541_rev_2) || - (hw->mac_type == e1000_82547_rev_2)) { -#endif - mdelay(20); - - e1000_write_phy_reg(hw,0x0000,0x0140); - - mdelay(5); - - if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) { - e1000_write_phy_reg(hw, 0x1F95, 0x0001); - - e1000_write_phy_reg(hw, 0x1F71, 0xBD21); - - e1000_write_phy_reg(hw, 0x1F79, 0x0018); - - e1000_write_phy_reg(hw, 0x1F30, 0x1600); - - e1000_write_phy_reg(hw, 0x1F31, 0x0014); - - e1000_write_phy_reg(hw, 0x1F32, 0x161C); - - e1000_write_phy_reg(hw, 0x1F94, 0x0003); - - e1000_write_phy_reg(hw, 0x1F96, 0x003F); - - e1000_write_phy_reg(hw, 0x2010, 0x0008); - } else { - e1000_write_phy_reg(hw, 0x1F73, 0x0099); - } - - e1000_write_phy_reg(hw, 0x0000, 0x3300); - - - if(hw->mac_type == e1000_82547) { - uint16_t fused, fine, coarse; - - /* Move to analog registers page */ - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - - if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - } -} - -/****************************************************************************** - * Set the mac type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int -e1000_set_mac_type(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - switch (hw->revision_id) { - case E1000_82542_2_0_REV_ID: - hw->mac_type = e1000_82542_rev2_0; - break; - case E1000_82542_2_1_REV_ID: - hw->mac_type = e1000_82542_rev2_1; - break; - default: - /* Invalid 82542 revision ID */ - return -E1000_ERR_MAC_TYPE; - } - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - hw->mac_type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - hw->mac_type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - hw->mac_type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - hw->mac_type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - hw->mac_type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - hw->mac_type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - hw->mac_type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - hw->mac_type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_MOBILE: - hw->mac_type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - hw->mac_type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - hw->mac_type = e1000_82547_rev_2; - break; - default: - /* Should never have loaded on this device */ - return -E1000_ERR_MAC_TYPE; - } - - return E1000_SUCCESS; -} - -/***************************************************************************** - * Set media type and TBI compatibility. - * - * hw - Struct containing variables accessed by shared code - * **************************************************************************/ -static void -e1000_set_media_type(struct e1000_hw *hw) -{ - uint32_t status; - - DEBUGFUNC("e1000_set_media_type"); - - if(hw->mac_type != e1000_82543) { - /* tbi_compatibility is only valid on 82543 */ - hw->tbi_compatibility_en = FALSE; - } - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - hw->media_type = e1000_media_type_internal_serdes; - break; - default: - if(hw->mac_type >= e1000_82543) { - status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_TBIMODE) { - hw->media_type = e1000_media_type_fiber; - /* tbi_compatibility not valid on fiber */ - hw->tbi_compatibility_en = FALSE; - } else { - hw->media_type = e1000_media_type_copper; - } - } else { - /* This is an 82542 (fiber only) */ - hw->media_type = e1000_media_type_fiber; - } - } -} - -/****************************************************************************** - * Reset the transmit and receive units; mask and clear all interrupts. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_reset_hw(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t ctrl_ext; - uint32_t icr; - uint32_t manc; - - DEBUGFUNC("e1000_reset_hw"); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if(hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ - hw->tbi_compatibility_on = FALSE; - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - mdelay(10); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Must reset the PHY before resetting the MAC */ - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); - mdelay(5); - } - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - DEBUGOUT("Issuing a global reset to MAC\n"); - - switch(hw->mac_type) { - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82546: - case e1000_82541: - case e1000_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - case e1000_82545_rev_3: - case e1000_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); - break; - default: - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - } - - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. - */ - switch(hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* Wait for reset to complete */ - udelay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - /* Wait for EEPROM reload */ - mdelay(2); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - /* Wait for EEPROM reload */ - mdelay(20); - break; - default: - /* Wait for EEPROM reload (it happens automatically) */ - mdelay(5); - break; - } - - /* Disable HW ARPs on ASF enabled adapters */ - if(hw->mac_type >= e1000_82540) { - manc = E1000_READ_REG(hw, MANC); - manc &= ~(E1000_MANC_ARP_EN); - E1000_WRITE_REG(hw, MANC, manc); - } - - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - e1000_phy_init_script(hw); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - icr = E1000_READ_REG(hw, ICR); - - /* If MWI was previously enabled, reenable it. */ - if(hw->mac_type == e1000_82542_rev2_0) { -#ifdef LINUX_DRIVER - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) -#endif - e1000_pci_set_mwi(hw); - } -} - -/****************************************************************************** - * Performs basic configuration of the adapter. - * - * hw - Struct containing variables accessed by shared code - * - * Assumes that the controller has previously been reset and is in a - * post-reset uninitialized state. Initializes the receive address registers, - * multicast table, and VLAN filter table. Calls routines to setup link - * configuration and flow control settings. Clears all on-chip counters. Leaves - * the transmit and receive units disabled and uninitialized. - *****************************************************************************/ -static int -e1000_init_hw(struct e1000_hw *hw) -{ - uint32_t ctrl, status; - uint32_t i; - int32_t ret_val; - uint16_t pcix_cmd_word; - uint16_t pcix_stat_hi_word; - uint16_t cmd_mmrbc; - uint16_t stat_mmrbc; - e1000_bus_type bus_type = e1000_bus_type_unknown; - - DEBUGFUNC("e1000_init_hw"); - - /* Set the media type and TBI compatibility */ - e1000_set_media_type(hw); - - /* Disabling VLAN filtering. */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - E1000_WRITE_REG(hw, VET, 0); - - e1000_clear_vfta(hw); - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if(hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(hw); - mdelay(5); - } - - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). - */ - e1000_init_rx_addrs(hw); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if(hw->mac_type == e1000_82542_rev2_0) { - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_FLUSH(hw); - mdelay(1); -#ifdef LINUX_DRIVER - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) -#endif - e1000_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for(i = 0; i < E1000_MC_TBL_SIZE; i++) - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - -#if 0 - /* Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. - */ - if(hw->dma_fairness) { - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); - } -#endif - - switch(hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - if (hw->mac_type >= e1000_82543) { - /* See e1000_get_bus_info() of the Linux driver */ - status = E1000_READ_REG(hw, STATUS); - bus_type = (status & E1000_STATUS_PCIX_MODE) ? - e1000_bus_type_pcix : e1000_bus_type_pci; - } - - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if(bus_type == e1000_bus_type_pcix) { - pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word); - pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if(cmd_mmrbc > stat_mmrbc) { - pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word); - } - } - break; - } - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = e1000_setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - if(hw->mac_type > e1000_82544) { - ctrl = E1000_READ_REG(hw, TXDCTL); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL, ctrl); - } - -#if 0 - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs(hw); -#endif - - return ret_val; -} - -/****************************************************************************** - * Adjust SERDES output amplitude based on EEPROM setting. - * - * hw - Struct containing variables accessed by shared code. - *****************************************************************************/ -static int32_t -e1000_adjust_serdes_amplitude(struct e1000_hw *hw) -{ - uint16_t eeprom_data; - int32_t ret_val; - - DEBUGFUNC("e1000_adjust_serdes_amplitude"); - - if(hw->media_type != e1000_media_type_internal_serdes) - return E1000_SUCCESS; - - switch(hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, - &eeprom_data))) { - return ret_val; - } - - if(eeprom_data != EEPROM_RESERVED_WORD) { - /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; - if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, - eeprom_data))) - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Configures flow control and link settings. - * - * hw - Struct containing variables accessed by shared code - * - * Determines which flow control settings to use. Calls the apropriate media- - * specific link configuration function. Configures the flow control settings. - * Assuming the adapter has a valid link partner, a valid link should be - * established. Assumes the hardware has previously been reset and the - * transmitter and receiver are not enabled. - *****************************************************************************/ -static int -e1000_setup_link(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - int32_t ret_val; - uint16_t eeprom_data; - - DEBUGFUNC("e1000_setup_link"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if(hw->fc == e1000_fc_default) { - if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = e1000_fc_none; - else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == - EEPROM_WORD0F_ASM_DIR) - hw->fc = e1000_fc_tx_pause; - else - hw->fc = e1000_fc_full; - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if(hw->mac_type == e1000_82542_rev2_0) - hw->fc &= (~e1000_fc_tx_pause); - -#if 0 - /* See e1000_sw_init() of the Linux driver */ - if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) -#else - if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543)) -#endif - hw->fc &= (~e1000_fc_rx_pause); - -#if 0 - hw->original_fc = hw->fc; -#endif - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before e1000_setup_pcs_link() - * or e1000_phy_setup() is called. - */ - if(hw->mac_type == e1000_82543) { - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - /* Call the necessary subroutine to configure the link. */ - ret_val = (hw->media_type == e1000_media_type_copper) ? - e1000_setup_copper_link(hw) : - e1000_setup_fiber_serdes_link(hw); - if (ret_val < 0) { - return ret_val; - } - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); -#if 0 - E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); -#else - E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER); -#endif - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if(!(hw->fc & e1000_fc_tx_pause)) { - E1000_WRITE_REG(hw, FCRTL, 0); - E1000_WRITE_REG(hw, FCRTH, 0); - } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. - */ -#if 0 - if(hw->fc_send_xon) { - E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } else { - E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } -#else - E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE)); - E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH); -#endif - } - return ret_val; -} - -/****************************************************************************** - * Sets up link for a fiber based or serdes based adapter - * - * hw - Struct containing variables accessed by shared code - * - * Manipulates Physical Coding Sublayer functions in order to configure - * link. Assumes the hardware has been previously reset and the transmitter - * and receiver are not enabled. - *****************************************************************************/ -static int -e1000_setup_fiber_serdes_link(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t status; - uint32_t txcw = 0; - uint32_t i; - uint32_t signal = 0; - int32_t ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link"); - - /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - * If we're on serdes media, adjust the output amplitude to value set in - * the EEPROM. - */ - ctrl = E1000_READ_REG(hw, CTRL); - if(hw->media_type == e1000_media_type_fiber) - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - - if((ret_val = e1000_adjust_serdes_amplitude(hw))) - return ret_val; - - /* Take the link out of reset */ - ctrl &= ~(E1000_CTRL_LRST); - -#if 0 - /* Adjust VCO speed to improve BER performance */ - if((ret_val = e1000_set_vco_speed(hw))) - return ret_val; -#endif - - e1000_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case e1000_fc_none: - /* Flow control is completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-neogtiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, TXCW, txcw); - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - hw->txcw = txcw; - mdelay(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. - */ - if(hw->media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { - DEBUGOUT("Looking for Link\n"); - for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - mdelay(10); - status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_LU) break; - } - if(i == (LINK_UP_TIMEOUT / 10)) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - if((ret_val = e1000_check_for_link(hw))) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - hw->autoneg_failed = 0; - } else { - hw->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - } else { - DEBUGOUT("No Signal Detected\n"); - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Detects which PHY is present and the speed and duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int -e1000_setup_copper_link(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - - DEBUGFUNC("e1000_setup_copper_link"); - - ctrl = E1000_READ_REG(hw, CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if(hw->mac_type > e1000_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, CTRL, ctrl); - } else { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); - E1000_WRITE_REG(hw, CTRL, ctrl); - e1000_phy_hw_reset(hw); - } - - /* Make sure we have a valid PHY */ - if((ret_val = e1000_detect_gig_phy(hw))) { - DEBUGOUT("Error, did not detect valid phy.\n"); - return ret_val; - } - DEBUGOUT1("Phy ID = %x \n", hw->phy_id); - - if(hw->mac_type <= e1000_82543 || - hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || -#if 0 - hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) - hw->phy_reset_disable = FALSE; - - if(!hw->phy_reset_disable) { -#else - hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { -#endif - if (hw->phy_type == e1000_phy_igp) { - - if((ret_val = e1000_phy_reset(hw))) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - /* Wait 10ms for MAC to configure PHY from eeprom settings */ - mdelay(15); - -#if 0 - /* disable lplu d3 during driver init */ - if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) { - DEBUGOUT("Error Disabling LPLU D3\n"); - return ret_val; - } - - /* Configure mdi-mdix settings */ - if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, - &phy_data))) - return ret_val; - - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - hw->dsp_config_state = e1000_dsp_config_disabled; - /* Force MDI for IGP B-0 PHY */ - phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | - IGP01E1000_PSCR_FORCE_MDI_MDIX); - hw->mdix = 1; - - } else { - hw->dsp_config_state = e1000_dsp_config_enabled; - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (hw->mdix) { - case 1: - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - } - if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, - phy_data))) - return ret_val; - - /* set auto-master slave resolution settings */ - e1000_ms_type phy_ms_setting = hw->master_slave; - - if(hw->ffe_config_state == e1000_ffe_config_active) - hw->ffe_config_state = e1000_ffe_config_enabled; - - if(hw->dsp_config_state == e1000_dsp_config_activated) - hw->dsp_config_state = e1000_dsp_config_enabled; -#endif - - /* when autonegotiation advertisment is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - if((ret_val = e1000_read_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &phy_data))) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - if((ret_val = e1000_write_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - phy_data))) - return ret_val; - /* Set auto Master/Slave resolution process */ - if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, - &phy_data))) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, - phy_data))) - return ret_val; - } - - if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, - &phy_data))) - return ret_val; - -#if 0 - /* load defaults for future use */ - hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy_ms_setting) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - default: - break; - } -#endif - - if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, - phy_data))) - return ret_val; - } else { - /* Enable CRS on TX. This must be set for half-duplex operation. */ - if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, - &phy_data))) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ -#if 0 - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (hw->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: -#endif - phy_data |= M88E1000_PSCR_AUTO_X_MODE; -#if 0 - break; - } -#endif - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, - phy_data))) - return ret_val; - - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data))) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - -#ifdef LINUX_DRIVER - if (hw->phy_revision < M88E1011_I_REV_4) { -#endif - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - if((ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, - phy_data))) - return ret_val; - } - - /* SW Reset the PHY so all changes take effect */ - if((ret_val = e1000_phy_reset(hw))) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; -#ifdef LINUX_DRIVER - } -#endif - } - - /* Options: - * autoneg = 1 (default) - * PHY will advertise value(s) parsed from - * autoneg_advertised and fc - * autoneg = 0 - * PHY will be set to 10H, 10F, 100H, or 100F - * depending on value parsed from forced_speed_duplex. - */ - - /* Is autoneg enabled? This is enabled by default or by software - * override. If so, call e1000_phy_setup_autoneg routine to parse the - * autoneg_advertised and fc options. If autoneg is NOT enabled, then - * the user should have provided a speed/duplex override. If so, then - * call e1000_phy_force_speed_duplex to parse and set this up. - */ - /* Perform some bounds checking on the hw->autoneg_advertised - * parameter. If this variable is zero, then set it to the default. - */ - hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if(hw->autoneg_advertised == 0) - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - if((ret_val = e1000_phy_setup_autoneg(hw))) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data))) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data))) - return ret_val; - -#if 0 - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if(hw->wait_autoneg_complete) { - if((ret_val = e1000_wait_autoneg(hw))) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } -#else - /* If we do not wait for autonegotiation to complete I - * do not see a valid link status. - */ - if((ret_val = e1000_wait_autoneg(hw))) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } -#endif - } /* !hw->phy_reset_disable */ - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for(i = 0; i < 10; i++) { - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - - if(phy_data & MII_SR_LINK_STATUS) { - /* We have link, so we need to finish the config process: - * 1) Set up the MAC to the current PHY speed/duplex - * if we are on 82543. If we - * are on newer silicon, we only need to configure - * collision distance in the Transmit Control Register. - * 2) Set up flow control on the MAC to that established with - * the link partner. - */ - if(hw->mac_type >= e1000_82544) { - e1000_config_collision_dist(hw); - } else { - if((ret_val = e1000_config_mac_to_phy(hw))) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - if((ret_val = e1000_config_fc_after_link_up(hw))) { - DEBUGOUT("Error Configuring Flow Control\n"); - return ret_val; - } -#if 0 - if(hw->phy_type == e1000_phy_igp) { - if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) { - DEBUGOUT("Error Configuring DSP after link up\n"); - return ret_val; - } - } -#endif - DEBUGOUT("Valid link established!!!\n"); - return E1000_SUCCESS; - } - udelay(10); - } - - DEBUGOUT("Unable to establish link!!!\n"); - return -E1000_ERR_NOLINK; -} - -/****************************************************************************** -* Configures PHY autoneg and flow control advertisement settings -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int -e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_autoneg_adv_reg; - uint16_t mii_1000t_ctrl_reg; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_autoneg_adv_reg))) - return ret_val; - - /* Read the MII 1000Base-T Control Register (Address 9). */ - if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg))) - return ret_val; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { - DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case e1000_fc_none: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, - mii_autoneg_adv_reg))) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg))) - return ret_val; - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Sets the collision distance in the Transmit Control register -* -* hw - Struct containing variables accessed by shared code -* -* Link should have been established previously. Reads the speed and duplex -* information from the Device Status register. -******************************************************************************/ -static void -e1000_config_collision_dist(struct e1000_hw *hw) -{ - uint32_t tctl; - - tctl = E1000_READ_REG(hw, TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/****************************************************************************** -* Sets MAC speed and duplex settings to reflect the those in the PHY -* -* hw - Struct containing variables accessed by shared code -* mii_reg - data to write to the MII control register -* -* The contents of the PHY register containing the needed information need to -* be passed in. -******************************************************************************/ -static int -e1000_config_mac_to_phy(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_config_mac_to_phy"); - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - if (hw->phy_type == e1000_phy_igp) { - if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, - &phy_data))) - return ret_val; - - if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; - else ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) - ctrl |= E1000_CTRL_SPD_1000; - else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_100MBPS) - ctrl |= E1000_CTRL_SPD_100; - } else { - if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data))) - return ret_val; - - if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; - else ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - } - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; -} - -/****************************************************************************** - * Forces the MAC's flow control settings. - * - * hw - Struct containing variables accessed by shared code - * - * Sets the TFCE and RFCE bits in the device control register to reflect - * the adapter settings. TFCE and RFCE need to be explicitly set by - * software when a Copper PHY is used because autonegotiation is managed - * by the PHY rather than the MAC. Software must also configure these - * bits when link is forced on a fiber connection. - *****************************************************************************/ -static int -e1000_force_mac_fc(struct e1000_hw *hw) -{ - uint32_t ctrl; - - DEBUGFUNC("e1000_force_mac_fc"); - - /* Get the current configuration of the Device Control Register */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if(hw->mac_type == e1000_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; -} - -/****************************************************************************** - * Configures flow control settings after link is established - * - * hw - Struct containing variables accessed by shared code - * - * Should be called immediately after a valid link has been established. - * Forces MAC flow control settings if link was forced. When in MII/GMII mode - * and autonegotiation is enabled, the MAC flow control settings will be set - * based on the flow control negotiated by the PHY. In TBI mode, the TFCE - * and RFCE bits will be automaticaly set to the negotiated flow control mode. - *****************************************************************************/ -static int -e1000_config_fc_after_link_up(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t mii_nway_adv_reg; - uint16_t mii_nway_lp_ability_reg; - uint16_t speed; - uint16_t duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) { - if((ret_val = e1000_force_mac_fc(hw))) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if(hw->media_type == e1000_media_type_copper) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg))) - return ret_val; - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg))) - return ret_val; - - if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg))) - return ret_val; - if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg))) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | e1000_fc_full - * - */ - if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ -#if 0 - if(hw->original_fc == e1000_fc_full) { - hw->fc = e1000_fc_full; -#else - if(hw->fc == e1000_fc_full) { -#endif - DEBUGOUT("Flow Control = FULL.\r\n"); - } else { - hw->fc = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * - */ - else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - */ - else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ -#if 0 - else if(hw->original_fc == e1000_fc_none || - hw->original_fc == e1000_fc_tx_pause) { -#else - else if(hw->fc == e1000_fc_none) - DEBUGOUT("Flow Control = NONE.\r\n"); - else if(hw->fc == e1000_fc_tx_pause) { -#endif - hw->fc = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\r\n"); - } else { - hw->fc = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - e1000_get_speed_and_duplex(hw, &speed, &duplex); - - if(duplex == HALF_DUPLEX) - hw->fc = e1000_fc_none; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - if((ret_val = e1000_force_mac_fc(hw))) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } else { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); - } - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Checks to see if the link status of the hardware has changed. - * - * hw - Struct containing variables accessed by shared code - * - * Called by any function that needs to check the link status of the adapter. - *****************************************************************************/ -static int -e1000_check_for_link(struct e1000_hw *hw) -{ - uint32_t rxcw; - uint32_t ctrl; - uint32_t status; - uint32_t rctl; - uint32_t signal = 0; - int32_t ret_val; - uint16_t phy_data; - uint16_t lp_capability; - - DEBUGFUNC("e1000_check_for_link"); - - /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - */ - if(hw->media_type == e1000_media_type_fiber) - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - - ctrl = E1000_READ_REG(hw, CTRL); - status = E1000_READ_REG(hw, STATUS); - rxcw = E1000_READ_REG(hw, RXCW); - - /* If we have a copper PHY then we only want to go out to the PHY - * registers to see if Auto-Neg has completed and/or if our link - * status has changed. The get_link_status flag will be set if we - * receive a Link Status Change interrupt or we have Rx Sequence - * Errors. - */ -#if 0 - if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { -#else - if(hw->media_type == e1000_media_type_copper) { -#endif - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - * Read the register twice since the link bit is sticky. - */ - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - - if(phy_data & MII_SR_LINK_STATUS) { -#if 0 - hw->get_link_status = FALSE; -#endif - } else { - /* No link detected */ - return -E1000_ERR_NOLINK; - } - - /* We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if(hw->mac_type >= e1000_82544) - e1000_config_collision_dist(hw); - else { - if((ret_val = e1000_config_mac_to_phy(hw))) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - if((ret_val = e1000_config_fc_after_link_up(hw))) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - - /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * parter capability register. We use the link partner capability to - * determine if TBI Compatibility needs to be turned on or off. If - * the link partner advertises any speed in addition to Gigabit, then - * we assume that they are GMII-based, and TBI compatibility is not - * needed. If no other speeds are advertised, we assume the link - * partner is TBI-based, and we turn on TBI Compatibility. - */ - if(hw->tbi_compatibility_en) { - if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, - &lp_capability))) - return ret_val; - if(lp_capability & (NWAY_LPAR_10T_HD_CAPS | - NWAY_LPAR_10T_FD_CAPS | - NWAY_LPAR_100TX_HD_CAPS | - NWAY_LPAR_100TX_FD_CAPS | - NWAY_LPAR_100T4_CAPS)) { - /* If our link partner advertises anything in addition to - * gigabit, we do not need to enable TBI compatibility. - */ - if(hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ - rctl = E1000_READ_REG(hw, RCTL); - rctl &= ~E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - hw->tbi_compatibility_on = FALSE; - } - } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and - * will look like CRC errors to to the hardware. - */ - if(!hw->tbi_compatibility_on) { - hw->tbi_compatibility_on = TRUE; - rctl = E1000_READ_REG(hw, RCTL); - rctl |= E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - } - } - } - } - /* If we don't have link (auto-negotiation failed or link partner cannot - * auto-negotiate), the cable is plugged in (we have signal), and our - * link partner is not trying to auto-negotiate with us (we are receiving - * idles or data), we need to force link up. We also need to give - * auto-negotiation time to complete, in case the cable was just plugged - * in. The autoneg_failed flag does this. - */ - else if((((hw->media_type == e1000_media_type_fiber) && - ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if(hw->autoneg_failed == 0) { - hw->autoneg_failed = 1; - return 0; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - if((ret_val = e1000_config_fc_after_link_up(hw))) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } - /* If we are forcing link and we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable forced link in the - * Device Control register in an attempt to auto-negotiate with our link - * partner. - */ - else if(((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && - (rxcw & E1000_RXCW_C)) { - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); - E1000_WRITE_REG(hw, TXCW, hw->txcw); - E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); - } -#if 0 - /* If we force link for non-auto-negotiation switch, check link status - * based on MAC synchronization for internal serdes media type. - */ - else if((hw->media_type == e1000_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { - /* SYNCH bit and IV bit are sticky. */ - udelay(10); - if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if(!(rxcw & E1000_RXCW_IV)) { - hw->serdes_link_down = FALSE; - DEBUGOUT("SERDES: Link is up.\n"); - } - } else { - hw->serdes_link_down = TRUE; - DEBUGOUT("SERDES: Link is down.\n"); - } - } -#endif - return E1000_SUCCESS; -} - -/****************************************************************************** - * Detects the current speed and duplex settings of the hardware. - * - * hw - Struct containing variables accessed by shared code - * speed - Speed of the connection - * duplex - Duplex setting of the connection - *****************************************************************************/ -static void -e1000_get_speed_and_duplex(struct e1000_hw *hw, - uint16_t *speed, - uint16_t *duplex) -{ - uint32_t status; - - DEBUGFUNC("e1000_get_speed_and_duplex"); - - if(hw->mac_type >= e1000_82543) { - status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if(status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if(status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\r\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT(" Half Duplex\r\n"); - } - } else { - DEBUGOUT("1000 Mbs, Full Duplex\r\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } -} - -/****************************************************************************** -* Blocks until autoneg completes or times out (~4.5 seconds) -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int -e1000_wait_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - - DEBUGFUNC("e1000_wait_autoneg"); - DEBUGOUT("Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) - return ret_val; - if(phy_data & MII_SR_AUTONEG_COMPLETE) { - DEBUGOUT("Auto-Neg complete.\n"); - return E1000_SUCCESS; - } - mdelay(100); - } - DEBUGOUT("Auto-Neg timedout.\n"); - return -E1000_ERR_TIMEOUT; -} - -/****************************************************************************** -* Raises the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void -e1000_raise_mdi_clk(struct e1000_hw *hw, - uint32_t *ctrl) -{ - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(10); -} - -/****************************************************************************** -* Lowers the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void -e1000_lower_mdi_clk(struct e1000_hw *hw, - uint32_t *ctrl) -{ - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(10); -} - -/****************************************************************************** -* Shifts data bits out to the PHY -* -* hw - Struct containing variables accessed by shared code -* data - Data to send out to the PHY -* count - Number of bits to shift out -* -* Bits are shifted out in MSB to LSB order. -******************************************************************************/ -static void -e1000_shift_out_mdi_bits(struct e1000_hw *hw, - uint32_t data, - uint16_t count) -{ - uint32_t ctrl; - uint32_t mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while(mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if(data & mask) ctrl |= E1000_CTRL_MDIO; - else ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - udelay(10); - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - mask = mask >> 1; - } -} - -/****************************************************************************** -* Shifts data bits in from the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Bits are shifted in in MSB to LSB order. -******************************************************************************/ -static uint16_t -e1000_shift_in_mdi_bits(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint16_t data = 0; - uint8_t i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - for(data = 0, i = 0; i < 16; i++) { - data = data << 1; - e1000_raise_mdi_clk(hw, &ctrl); - ctrl = E1000_READ_REG(hw, CTRL); - /* Check to see if we shifted in a "1". */ - if(ctrl & E1000_CTRL_MDIO) data |= 1; - e1000_lower_mdi_clk(hw, &ctrl); - } - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - return data; -} - -/***************************************************************************** -* Reads the value from a PHY register, if the value is on a specific non zero -* page, sets the page first. -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to read -******************************************************************************/ -static int -e1000_read_phy_reg(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t *phy_data) -{ - uint32_t ret_val; - - DEBUGFUNC("e1000_read_phy_reg"); - - if(hw->phy_type == e1000_phy_igp && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr))) - return ret_val; - } - - ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr, - phy_data); - - return ret_val; -} - -static int -e1000_read_phy_reg_ex(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t *phy_data) -{ - uint32_t i; - uint32_t mdic = 0; - const uint32_t phy_addr = 1; - - DEBUGFUNC("e1000_read_phy_reg_ex"); - - if(reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if(hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 64; i++) { - udelay(50); - mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; - } - if(!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if(mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (uint16_t) mdic; - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *phy_data = e1000_shift_in_mdi_bits(hw); - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Writes a value to a PHY register -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to write -* data - data to write to the PHY -******************************************************************************/ -static int -e1000_write_phy_reg(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t phy_data) -{ - uint32_t ret_val; - - DEBUGFUNC("e1000_write_phy_reg"); - - if(hw->phy_type == e1000_phy_igp && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr))) - return ret_val; - } - - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr, - phy_data); - - return ret_val; -} - -static int -e1000_write_phy_reg_ex(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t phy_data) -{ - uint32_t i; - uint32_t mdic = 0; - const uint32_t phy_addr = 1; - - DEBUGFUNC("e1000_write_phy_reg_ex"); - - if(reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if(hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, register address, and data intended - * for the PHY register in the MDI Control register. The MAC will take - * care of interfacing with the PHY to send the desired data. - */ - mdic = (((uint32_t) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 640; i++) { - udelay(5); - mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; - } - if(!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * . - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (uint32_t) phy_data; - - e1000_shift_out_mdi_bits(hw, mdic, 32); - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Returns the PHY to the power-on reset state -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static void -e1000_phy_hw_reset(struct e1000_hw *hw) -{ - uint32_t ctrl, ctrl_ext; - - DEBUGFUNC("e1000_phy_hw_reset"); - - DEBUGOUT("Resetting Phy...\n"); - - if(hw->mac_type > e1000_82543) { - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - */ - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - mdelay(10); - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - mdelay(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - udelay(150); -} - -/****************************************************************************** -* Resets the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Sets bit 15 of the MII Control regiser -******************************************************************************/ -static int -e1000_phy_reset(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_phy_reset"); - - if(hw->mac_type != e1000_82541_rev_2) { - if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data))) - return ret_val; - - phy_data |= MII_CR_RESET; - if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data))) - return ret_val; - - udelay(1); - } else e1000_phy_hw_reset(hw); - - if(hw->phy_type == e1000_phy_igp) - e1000_phy_init_script(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Probes the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int -e1000_detect_gig_phy(struct e1000_hw *hw) -{ - int32_t phy_init_status, ret_val; - uint16_t phy_id_high, phy_id_low; - boolean_t match = FALSE; - - DEBUGFUNC("e1000_detect_gig_phy"); - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high))) - return ret_val; - - hw->phy_id = (uint32_t) (phy_id_high << 16); - udelay(20); - if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low))) - return ret_val; - - hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); -#ifdef LINUX_DRIVER - hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; -#endif - - switch(hw->mac_type) { - case e1000_82543: - if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; - break; - case e1000_82544: - if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; - break; - default: - DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - phy_init_status = e1000_set_phy_type(hw); - - if ((match) && (phy_init_status == E1000_SUCCESS)) { - DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); - return E1000_SUCCESS; - } - DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); - return -E1000_ERR_PHY; -} - -/****************************************************************************** - * Sets up eeprom variables in the hw struct. Must be called after mac_type - * is configured. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_init_eeprom_params(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd = E1000_READ_REG(hw, EECD); - uint16_t eeprom_size; - - DEBUGFUNC("e1000_init_eeprom_params"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - eeprom->type = e1000_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if(eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = e1000_eeprom_spi; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - break; - default: - eeprom->type = e1000_eeprom_spi; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - break; - } - - if (eeprom->type == e1000_eeprom_spi) { - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - eeprom->word_size = 64; - if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { - eeprom_size &= EEPROM_SIZE_MASK; - - switch (eeprom_size) { - case EEPROM_SIZE_16KB: - eeprom->word_size = 8192; - break; - case EEPROM_SIZE_8KB: - eeprom->word_size = 4096; - break; - case EEPROM_SIZE_4KB: - eeprom->word_size = 2048; - break; - case EEPROM_SIZE_2KB: - eeprom->word_size = 1024; - break; - case EEPROM_SIZE_1KB: - eeprom->word_size = 512; - break; - case EEPROM_SIZE_512B: - eeprom->word_size = 256; - break; - case EEPROM_SIZE_128B: - default: - break; - } - } - } -} - -/****************************************************************************** - * Raises the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void -e1000_raise_ee_clk(struct e1000_hw *hw, - uint32_t *eecd) -{ - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); -} - -/****************************************************************************** - * Lowers the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void -e1000_lower_ee_clk(struct e1000_hw *hw, - uint32_t *eecd) -{ - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); -} - -/****************************************************************************** - * Shift data bits out to the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * data - data to send to the EEPROM - * count - number of bits to shift out - *****************************************************************************/ -static void -e1000_shift_out_ee_bits(struct e1000_hw *hw, - uint16_t data, - uint16_t count) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - uint32_t mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = E1000_READ_REG(hw, EECD); - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~E1000_EECD_DO; - } else if (eeprom->type == e1000_eeprom_spi) { - eecd |= E1000_EECD_DO; - } - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if(data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - - udelay(eeprom->delay_usec); - - e1000_raise_ee_clk(hw, &eecd); - e1000_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while(mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, EECD, eecd); -} - -/****************************************************************************** - * Shift data bits in from the EEPROM - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static uint16_t -e1000_shift_in_ee_bits(struct e1000_hw *hw, - uint16_t count) -{ - uint32_t eecd; - uint32_t i; - uint16_t data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. - */ - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for(i = 0; i < count; i++) { - data = data << 1; - e1000_raise_ee_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DI); - if(eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_ee_clk(hw, &eecd); - } - - return data; -} - -/****************************************************************************** - * Prepares EEPROM for access - * - * hw - Struct containing variables accessed by shared code - * - * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This - * function should be called before issuing a command to the EEPROM. - *****************************************************************************/ -static int32_t -e1000_acquire_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd, i=0; - - eecd = E1000_READ_REG(hw, EECD); - - /* Request EEPROM Access */ - if(hw->mac_type > e1000_82544) { - eecd |= E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - eecd = E1000_READ_REG(hw, EECD); - while((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - udelay(5); - eecd = E1000_READ_REG(hw, EECD); - } - if(!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - DEBUGOUT("Could not acquire EEPROM grant\n"); - return -E1000_ERR_EEPROM; - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == e1000_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - udelay(1); - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Returns EEPROM to a "standby" state - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_standby_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - - eecd = E1000_READ_REG(hw, EECD); - - if(eeprom->type == e1000_eeprom_microwire) { - - /* Deselect EEPROM */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } else if(eeprom->type == e1000_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } -} - -/****************************************************************************** - * Terminates a command by inverting the EEPROM's chip select pin - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_release_eeprom(struct e1000_hw *hw) -{ - uint32_t eecd; - - eecd = E1000_READ_REG(hw, EECD); - - if (hw->eeprom.type == e1000_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ - - E1000_WRITE_REG(hw, EECD, eecd); - - udelay(hw->eeprom.delay_usec); - } else if(hw->eeprom.type == e1000_eeprom_microwire) { - /* cleanup eeprom */ - - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - - E1000_WRITE_REG(hw, EECD, eecd); - - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - } - - /* Stop requesting EEPROM access */ - if(hw->mac_type > e1000_82544) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - } -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_spi_eeprom_ready(struct e1000_hw *hw) -{ - uint16_t retry_count = 0; - uint8_t spi_stat_reg; - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - udelay(5); - retry_count += 5; - - } while(retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if(retry_count >= EEPROM_MAX_RETRY_SPI) { - DEBUGOUT("SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int -e1000_read_eeprom(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t i = 0; - - DEBUGFUNC("e1000_read_eeprom"); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT("\"words\" parameter out of bounds\n"); - return -E1000_ERR_EEPROM; - } - - /* Prepare the EEPROM for reading */ - if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - if(eeprom->type == e1000_eeprom_spi) { - uint16_t word_in; - uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - - if(e1000_spi_eeprom_ready(hw)) { - e1000_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); - - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if(eeprom->type == e1000_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ - data[i] = e1000_shift_in_ee_bits(hw, 16); - e1000_standby_eeprom(hw); - } - } - - /* End this read operation */ - e1000_release_eeprom(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Verifies that the EEPROM has a valid checksum - * - * hw - Struct containing variables accessed by shared code - * - * Reads the first 64 16 bit words of the EEPROM and sums the values read. - * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is - * valid. - *****************************************************************************/ -static int -e1000_validate_eeprom_checksum(struct e1000_hw *hw) -{ - uint16_t checksum = 0; - uint16_t i, eeprom_data; - - DEBUGFUNC("e1000_validate_eeprom_checksum"); - - for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - - if(checksum == (uint16_t) EEPROM_SUM) - return E1000_SUCCESS; - else { - DEBUGOUT("EEPROM Checksum Invalid\n"); - return -E1000_ERR_EEPROM; - } -} - -/****************************************************************************** - * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the - * second function of dual function devices - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int -e1000_read_mac_addr(struct e1000_hw *hw) -{ - uint16_t offset; - uint16_t eeprom_data; - int i; - - DEBUGFUNC("e1000_read_mac_addr"); - - for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - offset = i >> 1; - if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - hw->mac_addr[i] = eeprom_data & 0xff; - hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff; - } - if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) - /* Invert the last bit if this is the second device */ - hw->mac_addr[5] ^= 1; - return E1000_SUCCESS; -} - -/****************************************************************************** - * Initializes receive address filters. - * - * hw - Struct containing variables accessed by shared code - * - * Places the MAC address in receive address register 0 and clears the rest - * of the receive addresss registers. Clears the multicast table. Assumes - * the receiver is in reset when the routine is called. - *****************************************************************************/ -static void -e1000_init_rx_addrs(struct e1000_hw *hw) -{ - uint32_t i; - uint32_t addr_low; - uint32_t addr_high; - - DEBUGFUNC("e1000_init_rx_addrs"); - - /* Setup the receive address. */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - addr_low = (hw->mac_addr[0] | - (hw->mac_addr[1] << 8) | - (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24)); - - addr_high = (hw->mac_addr[4] | - (hw->mac_addr[5] << 8) | E1000_RAH_AV); - - E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); - E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); - - /* Zero out the other 15 receive addresses. */ - DEBUGOUT("Clearing RAR[1-15]\n"); - for(i = 1; i < E1000_RAR_ENTRIES; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - } -} - -/****************************************************************************** - * Clears the VLAN filer table - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_clear_vfta(struct e1000_hw *hw) -{ - uint32_t offset; - - for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); -} - - -/****************************************************************************** - * Functions from e1000_main.c of the linux driver - ******************************************************************************/ - -/** - * e1000_reset - Reset the adapter - */ - -static int -e1000_reset(struct e1000_hw *hw) -{ - uint32_t pba; - /* Repartition Pba for greater than 9k mtu - * To take effect CTRL.RST is required. - */ - - if(hw->mac_type < e1000_82547) { - pba = E1000_PBA_48K; - } else { - pba = E1000_PBA_30K; - } - E1000_WRITE_REG(hw, PBA, pba); - - /* flow control settings */ -#if 0 - hw->fc_high_water = FC_DEFAULT_HI_THRESH; - hw->fc_low_water = FC_DEFAULT_LO_THRESH; - hw->fc_pause_time = FC_DEFAULT_TX_TIMER; - hw->fc_send_xon = 1; - hw->fc = hw->original_fc; -#endif - - e1000_reset_hw(hw); - if(hw->mac_type >= e1000_82544) - E1000_WRITE_REG(hw, WUC, 0); - return e1000_init_hw(hw); -} - -/** - * e1000_sw_init - Initialize general software structures (struct e1000_adapter) - * @adapter: board private structure to initialize - * - * e1000_sw_init initializes the Adapter private data structure. - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - **/ - -static int -e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw) -{ - int result; - - /* PCI config space info */ - pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id); - pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id); - pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id); -#if 0 - pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, - &hw->subsystem_vendor_id); - pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); -#endif - - pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); - - /* identify the MAC */ - - result = e1000_set_mac_type(hw); - if (result) { - E1000_ERR("Unknown MAC Type\n"); - return result; - } - - /* initialize eeprom parameters */ - - e1000_init_eeprom_params(hw); - -#if 0 - if((hw->mac_type == e1000_82541) || - (hw->mac_type == e1000_82547) || - (hw->mac_type == e1000_82541_rev_2) || - (hw->mac_type == e1000_82547_rev_2)) - hw->phy_init_script = 1; -#endif - - e1000_set_media_type(hw); - -#if 0 - if(hw->mac_type < e1000_82543) - hw->report_tx_early = 0; - else - hw->report_tx_early = 1; - - hw->wait_autoneg_complete = FALSE; -#endif - hw->tbi_compatibility_en = TRUE; -#if 0 - hw->adaptive_ifs = TRUE; - - /* Copper options */ - - if(hw->media_type == e1000_media_type_copper) { - hw->mdix = AUTO_ALL_MODES; - hw->disable_polarity_correction = FALSE; - hw->master_slave = E1000_MASTER_SLAVE; - } -#endif - return E1000_SUCCESS; -} - - -/****************************************************************************** - * Functions not present in the linux driver - ******************************************************************************/ - -static void fill_rx (void) -{ - struct e1000_rx_desc *rd; - rx_last = rx_tail; - rd = rx_base + rx_tail; - rx_tail = (rx_tail + 1) % 8; - memset (rd, 0, 16); - rd->buffer_addr = virt_to_bus(&e1000_bufs.packet); - E1000_WRITE_REG (&hw, RDT, rx_tail); -} - -static void init_descriptor (void) -{ - unsigned long ptr; - unsigned long tctl; - - ptr = virt_to_phys(e1000_bufs.tx_pool); - if (ptr & 0xf) - ptr = (ptr + 0x10) & (~0xf); - - tx_base = phys_to_virt(ptr); - - E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base)); - E1000_WRITE_REG (&hw, TDBAH, 0); - E1000_WRITE_REG (&hw, TDLEN, 128); - - /* Setup the HW Tx Head and Tail descriptor pointers */ - - E1000_WRITE_REG (&hw, TDH, 0); - E1000_WRITE_REG (&hw, TDT, 0); - tx_tail = 0; - - /* Program the Transmit Control Register */ - -#ifdef LINUX_DRIVER_TCTL - tctl = E1000_READ_REG(&hw, TCTL); - - tctl &= ~E1000_TCTL_CT; - tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); -#else - tctl = E1000_TCTL_PSP | E1000_TCTL_EN | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | - (E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); -#endif - - E1000_WRITE_REG (&hw, TCTL, tctl); - - e1000_config_collision_dist(&hw); - - - rx_tail = 0; - /* disable receive */ - E1000_WRITE_REG (&hw, RCTL, 0); - ptr = virt_to_phys(e1000_bufs.rx_pool); - if (ptr & 0xf) - ptr = (ptr + 0x10) & (~0xf); - rx_base = phys_to_virt(ptr); - - /* Setup the Base and Length of the Rx Descriptor Ring */ - - E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base)); - E1000_WRITE_REG (&hw, RDBAH, 0); - - E1000_WRITE_REG (&hw, RDLEN, 128); - - /* Setup the HW Rx Head and Tail Descriptor Pointers */ - E1000_WRITE_REG (&hw, RDH, 0); - E1000_WRITE_REG (&hw, RDT, 0); - - E1000_WRITE_REG (&hw, RCTL, - E1000_RCTL_EN | - E1000_RCTL_BAM | - E1000_RCTL_SZ_2048 | - E1000_RCTL_MPE); - fill_rx(); -} - - - -/************************************************************************** -POLL - Wait for a frame -***************************************************************************/ -static int -e1000_poll (struct nic *nic, int retrieve) -{ - /* return true if there's an ethernet packet ready to read */ - /* nic->packet should contain data on return */ - /* nic->packetlen should contain length of data */ - struct e1000_rx_desc *rd; - uint32_t icr; - - rd = rx_base + rx_last; - if (!rd->status & E1000_RXD_STAT_DD) - return 0; - - if ( ! retrieve ) return 1; - - // printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length); - memcpy (nic->packet, e1000_bufs.packet, rd->length); - nic->packetlen = rd->length; - fill_rx (); - - /* Acknowledge interrupt. */ - icr = E1000_READ_REG(&hw, ICR); - - return 1; -} - -/************************************************************************** -TRANSMIT - Transmit a frame -***************************************************************************/ -static void -e1000_transmit (struct nic *nic, const char *d, /* Destination */ - unsigned int type, /* Type */ - unsigned int size, /* size */ - const char *p) /* Packet */ -{ - /* send the packet to destination */ - struct eth_hdr { - unsigned char dst_addr[ETH_ALEN]; - unsigned char src_addr[ETH_ALEN]; - unsigned short type; - } hdr; - struct e1000_tx_desc *txhd; /* header */ - struct e1000_tx_desc *txp; /* payload */ - DEBUGFUNC("send"); - - memcpy (&hdr.dst_addr, d, ETH_ALEN); - memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN); - - hdr.type = htons (type); - txhd = tx_base + tx_tail; - tx_tail = (tx_tail + 1) % 8; - txp = tx_base + tx_tail; - tx_tail = (tx_tail + 1) % 8; - - txhd->buffer_addr = virt_to_bus (&hdr); - txhd->lower.data = sizeof (hdr); - txhd->upper.data = 0; - - txp->buffer_addr = virt_to_bus(p); - txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size; - txp->upper.data = 0; - - E1000_WRITE_REG (&hw, TDT, tx_tail); - while (!(txp->upper.data & E1000_TXD_STAT_DD)) { - udelay(10); /* give the nic a chance to write to the register */ - } - DEBUGFUNC("send end"); -} - - -/************************************************************************** -DISABLE - Turn off ethernet interface -***************************************************************************/ -static void e1000_disable ( struct nic *nic __unused ) { - /* Clear the transmit ring */ - E1000_WRITE_REG (&hw, TDH, 0); - E1000_WRITE_REG (&hw, TDT, 0); - - /* Clear the receive ring */ - E1000_WRITE_REG (&hw, RDH, 0); - E1000_WRITE_REG (&hw, RDT, 0); - - /* put the card in its initial state */ - switch(hw.mac_type) { - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82546: - case e1000_82541: - case e1000_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(&hw, CTRL, E1000_CTRL_RST); - break; - case e1000_82545_rev_3: - case e1000_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - E1000_WRITE_REG(&hw, CTRL_DUP, E1000_CTRL_RST); - break; - default: - E1000_WRITE_REG(&hw, CTRL, E1000_CTRL_RST); - break; - } - - /* Turn off the ethernet interface */ - E1000_WRITE_REG (&hw, RCTL, 0); - E1000_WRITE_REG (&hw, TCTL, 0); - mdelay (10); - - /* Unmap my window to the device */ - iounmap(hw.hw_addr); -} - -/************************************************************************** -IRQ - Enable, Disable, or Force interrupts -***************************************************************************/ -static void e1000_irq(struct nic *nic __unused, irq_action_t action) -{ - switch ( action ) { - case DISABLE : - E1000_WRITE_REG(&hw, IMC, ~0); - E1000_WRITE_FLUSH(&hw); - break; - case ENABLE : - E1000_WRITE_REG(&hw, IMS, - E1000_IMS_RXT0 | E1000_IMS_RXSEQ); - E1000_WRITE_FLUSH(&hw); - break; - case FORCE : - E1000_WRITE_REG(&hw, ICS, E1000_ICS_RXT0); - break; - } -} - -#define IORESOURCE_IO 0x00000100 /* Resource type */ -#define BAR_0 0 -#define BAR_1 1 -#define BAR_5 5 - -/************************************************************************** -PROBE - Look for an adapter, this routine's visible to the outside -You should omit the last argument struct pci_device * for a non-PCI NIC -***************************************************************************/ -static int e1000_probe ( struct nic *nic, struct pci_device *p ) { - - unsigned long mmio_start, mmio_len; - int ret_val, i; - - /* Initialize hw with default values */ - memset(&hw, 0, sizeof(hw)); - hw.pdev = p; - -#if 1 - /* Are these variables needed? */ - hw.fc = e1000_fc_none; -#if 0 - hw.original_fc = e1000_fc_none; -#endif - hw.autoneg_failed = 0; -#if 0 - hw.get_link_status = TRUE; -#endif -#endif - - mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0); - mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0); - hw.hw_addr = ioremap(mmio_start, mmio_len); - - for(i = BAR_1; i <= BAR_5; i++) { - if(pci_bar_size(p, i) == 0) - continue; - if(pci_find_capability(p, i) & IORESOURCE_IO) { - hw.io_base = pci_bar_start(p, i); - break; - } - } - - adjust_pci_device(p); - - pci_fill_nic ( nic, p ); - - /* From Matt Hortman */ - /* MAC and Phy settings */ - - /* setup the private structure */ - if (e1000_sw_init(p, &hw) < 0) { - iounmap(hw.hw_addr); - return 0; - } - - /* make sure the EEPROM is good */ - - if (e1000_validate_eeprom_checksum(&hw) < 0) { - printf ("The EEPROM Checksum Is Not Valid\n"); - iounmap(hw.hw_addr); - return 0; - } - - /* copy the MAC address out of the EEPROM */ - - e1000_read_mac_addr(&hw); - memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN); - - /* reset the hardware with the new settings */ - - ret_val = e1000_reset(&hw); - if (ret_val < 0) { - if ((ret_val == -E1000_ERR_NOLINK) || - (ret_val == -E1000_ERR_TIMEOUT)) { - E1000_ERR("Valid Link not detected\n"); - } else { - E1000_ERR("Hardware Initialization Failed\n"); - } - iounmap(hw.hw_addr); - return 0; - } - init_descriptor(); - - /* point to NIC specific routines */ - nic->nic_op = &e1000_operations; - - return 1; -} - -static struct nic_operations e1000_operations = { - .connect = dummy_connect, - .poll = e1000_poll, - .transmit = e1000_transmit, - .irq = e1000_irq, - -}; - -static struct pci_device_id e1000_nics[] = { -PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"), -PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"), -PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"), -PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"), -PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"), -PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"), -PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"), -PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"), -PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"), -PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"), -PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"), -PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"), -PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"), -PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"), -PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"), -PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"), -PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"), -PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"), -PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"), -PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"), -PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"), -PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"), -PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"), -PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"), -PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"), -PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"), -PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"), -PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"), -PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"), -PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"), -}; - -PCI_DRIVER ( e1000_driver, e1000_nics, PCI_NO_CLASS ); - -DRIVER ( "E1000", nic_driver, pci_driver, e1000_driver, - e1000_probe, e1000_disable ); diff --git a/src/drivers/net/e1000-old/e1000_hw.h b/src/drivers/net/e1000-old/e1000_hw.h deleted file mode 100644 index 7c7f48f6..00000000 --- a/src/drivers/net/e1000-old/e1000_hw.h +++ /dev/null @@ -1,2058 +0,0 @@ -/******************************************************************************* - - - Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. - - This program is free software; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published by the Free - Software Foundation; either version 2 of the License, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., 59 - Temple Place - Suite 330, Boston, MA 02111-1307, USA. - - The full GNU General Public License is included in this distribution in the - file called LICENSE. - - Contact Information: - Linux NICS - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* e1000_hw.h - * Structures, enums, and macros for the MAC - */ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -/* Forward declarations of structures used by the shared code */ -struct e1000_hw; -struct e1000_hw_stats; - -/* Enumerated types specific to the e1000 hardware */ -/* Media Access Controlers */ -typedef enum { - e1000_undefined = 0, - e1000_82542_rev2_0, - e1000_82542_rev2_1, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_num_macs -} e1000_mac_type; - -typedef enum { - e1000_eeprom_uninitialized = 0, - e1000_eeprom_spi, - e1000_eeprom_microwire, - e1000_num_eeprom_types -} e1000_eeprom_type; - -/* Media Types */ -typedef enum { - e1000_media_type_copper = 0, - e1000_media_type_fiber = 1, - e1000_media_type_internal_serdes = 2, - e1000_num_media_types -} e1000_media_type; - -typedef enum { - e1000_10_half = 0, - e1000_10_full = 1, - e1000_100_half = 2, - e1000_100_full = 3 -} e1000_speed_duplex_type; - -/* Flow Control Settings */ -typedef enum { - e1000_fc_none = 0, - e1000_fc_rx_pause = 1, - e1000_fc_tx_pause = 2, - e1000_fc_full = 3, - e1000_fc_default = 0xFF -} e1000_fc_type; - -/* PCI bus types */ -typedef enum { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_reserved -} e1000_bus_type; - -/* PCI bus speeds */ -typedef enum { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_reserved -} e1000_bus_speed; - -/* PCI bus widths */ -typedef enum { - e1000_bus_width_unknown = 0, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -} e1000_bus_width; - -/* PHY status info structure and supporting enums */ -typedef enum { - e1000_cable_length_50 = 0, - e1000_cable_length_50_80, - e1000_cable_length_80_110, - e1000_cable_length_110_140, - e1000_cable_length_140, - e1000_cable_length_undefined = 0xFF -} e1000_cable_length; - -typedef enum { - e1000_igp_cable_length_10 = 10, - e1000_igp_cable_length_20 = 20, - e1000_igp_cable_length_30 = 30, - e1000_igp_cable_length_40 = 40, - e1000_igp_cable_length_50 = 50, - e1000_igp_cable_length_60 = 60, - e1000_igp_cable_length_70 = 70, - e1000_igp_cable_length_80 = 80, - e1000_igp_cable_length_90 = 90, - e1000_igp_cable_length_100 = 100, - e1000_igp_cable_length_110 = 110, - e1000_igp_cable_length_120 = 120, - e1000_igp_cable_length_130 = 130, - e1000_igp_cable_length_140 = 140, - e1000_igp_cable_length_150 = 150, - e1000_igp_cable_length_160 = 160, - e1000_igp_cable_length_170 = 170, - e1000_igp_cable_length_180 = 180 -} e1000_igp_cable_length; - -typedef enum { - e1000_10bt_ext_dist_enable_normal = 0, - e1000_10bt_ext_dist_enable_lower, - e1000_10bt_ext_dist_enable_undefined = 0xFF -} e1000_10bt_ext_dist_enable; - -typedef enum { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -} e1000_rev_polarity; - -typedef enum { - e1000_downshift_normal = 0, - e1000_downshift_activated, - e1000_downshift_undefined = 0xFF -} e1000_downshift; - -typedef enum { - e1000_polarity_reversal_enabled = 0, - e1000_polarity_reversal_disabled, - e1000_polarity_reversal_undefined = 0xFF -} e1000_polarity_reversal; - -typedef enum { - e1000_auto_x_mode_manual_mdi = 0, - e1000_auto_x_mode_manual_mdix, - e1000_auto_x_mode_auto1, - e1000_auto_x_mode_auto2, - e1000_auto_x_mode_undefined = 0xFF -} e1000_auto_x_mode; - -typedef enum { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -} e1000_1000t_rx_status; - -typedef enum { - e1000_phy_m88 = 0, - e1000_phy_igp, - e1000_phy_undefined = 0xFF -} e1000_phy_type; - -typedef enum { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -} e1000_ms_type; - -typedef enum { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked -} e1000_ffe_config; - -typedef enum { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF -} e1000_dsp_config; - -struct e1000_phy_info { - e1000_cable_length cable_length; - e1000_10bt_ext_dist_enable extended_10bt_distance; - e1000_rev_polarity cable_polarity; - e1000_downshift downshift; - e1000_polarity_reversal polarity_correction; - e1000_auto_x_mode mdix_mode; - e1000_1000t_rx_status local_rx; - e1000_1000t_rx_status remote_rx; -}; - -struct e1000_phy_stats { - uint32_t idle_errors; - uint32_t receive_errors; -}; - -struct e1000_eeprom_info { - e1000_eeprom_type type; - uint16_t word_size; - uint16_t opcode_bits; - uint16_t address_bits; - uint16_t delay_usec; - uint16_t page_size; -}; - - - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_EEPROM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_TYPE 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_NOLINK 7 -#define E1000_ERR_TIMEOUT 8 - -#define E1000_READ_REG_IO(a, reg) \ - e1000_read_reg_io((a), E1000_##reg) -#define E1000_WRITE_REG_IO(a, reg, val) \ - e1000_write_reg_io((a), E1000_##reg, val) - -/* PCI Device IDs */ -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82547EI 0x1019 - -#define NODE_ADDRESS_SIZE 6 -#define ETH_LENGTH_OF_ADDRESS 6 - -/* MAC decode size is 128K - This is the size of BAR0 */ -#define MAC_DECODE_SIZE (128 * 1024) - -#define E1000_82542_2_0_REV_ID 2 -#define E1000_82542_2_1_REV_ID 3 - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -/* The sizes (in bytes) of a ethernet packet */ -#define ENET_HEADER_SIZE 14 -#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ -#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ -#define ETHERNET_FCS_SIZE 4 -#define MAXIMUM_ETHERNET_PACKET_SIZE \ - (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) -#define MINIMUM_ETHERNET_PACKET_SIZE \ - (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) -#define CRC_LENGTH ETHERNET_FCS_SIZE -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - - -/* 802.1q VLAN Packet Sizes */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ -#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ -#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ - -/* Packet Header defines */ -#define IP_PROTOCOL_TCP 6 -#define IP_PROTOCOL_UDP 0x11 - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - */ -#define POLL_IMS_ENABLE_MASK ( \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ) - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. We - * reserve one of these spots for our directed address, allowing us room for - * E1000_RAR_ENTRIES - 1 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 - -#define MIN_NUMBER_OF_DESCRIPTORS 8 -#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 - -/* Receive Descriptor */ -struct e1000_rx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - uint16_t length; /* Length of data DMAed into data buffer */ - uint16_t csum; /* Packet checksum */ - uint8_t status; /* Descriptor status */ - uint8_t errors; /* Descriptor Errors */ - uint16_t special; -}; - -/* Receive Decriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Transmit Descriptor */ -struct e1000_tx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - union { - uint32_t data; - struct { - uint16_t length; /* Data buffer length */ - uint8_t cso; /* Checksum offset */ - uint8_t cmd; /* Descriptor control */ - } flags; - } lower; - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t css; /* Checksum start */ - uint16_t special; - } fields; - } upper; -}; - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - uint32_t ip_config; - struct { - uint8_t ipcss; /* IP checksum start */ - uint8_t ipcso; /* IP checksum offset */ - uint16_t ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - uint32_t tcp_config; - struct { - uint8_t tucss; /* TCP checksum start */ - uint8_t tucso; /* TCP checksum offset */ - uint16_t tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - uint32_t cmd_and_length; /* */ - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t hdr_len; /* Header length */ - uint16_t mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - uint64_t buffer_addr; /* Address of the descriptor's buffer address */ - union { - uint32_t data; - struct { - uint16_t length; /* Data buffer length */ - uint8_t typ_len_ext; /* */ - uint8_t cmd; /* */ - } flags; - } lower; - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t popts; /* Packet Options */ - uint16_t special; /* */ - } fields; - } upper; -}; - -/* Filters */ -#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ -#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - - -/* Receive Address Register */ -struct e1000_rar { - volatile uint32_t low; /* receive address low */ - volatile uint32_t high; /* receive address high */ -}; - -/* Number of entries in the Multicast Table Array (MTA). */ -#define E1000_NUM_MTA_REGISTERS 128 - -/* IPv4 Address Table Entry */ -struct e1000_ipv4_at_entry { - volatile uint32_t ipv4_addr; /* IP Address (RW) */ - volatile uint32_t reserved; -}; - -/* Four wakeup IP addresses are supported */ -#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 -#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX -#define E1000_IP6AT_SIZE 1 - -/* IPv6 Address Table Entry */ -struct e1000_ipv6_at_entry { - volatile uint8_t ipv6_addr[16]; -}; - -/* Flexible Filter Length Table Entry */ -struct e1000_fflt_entry { - volatile uint32_t length; /* Flexible Filter Length (RW) */ - volatile uint32_t reserved; -}; - -/* Flexible Filter Mask Table Entry */ -struct e1000_ffmt_entry { - volatile uint32_t mask; /* Flexible Filter Mask (RW) */ - volatile uint32_t reserved; -}; - -/* Flexible Filter Value Table Entry */ -struct e1000_ffvt_entry { - volatile uint32_t value; /* Flexible Filter Value (RW) */ - volatile uint32_t reserved; -}; - -/* Four Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 - -/* Each Flexible Filter is at most 128 (0x80) bytes in length */ -#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 - -#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX -#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX -#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX - -/* Register Set. (82543, 82544) - * - * Registers are defined to be 32 bits and should be accessed as 32 bit values. - * These registers are physically located on the NIC, but are mapped into the - * host memory address space. - * - * RW - register is both readable and writable - * RO - register is read only - * WO - register is write only - * R/clr - register is read only and is cleared when read - * A - register array - */ -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_RCTL 0x00100 /* RX Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ -#define E1000_TCTL 0x00400 /* TX Control - RW */ -#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ -#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ -#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ -#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ -#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ -#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ -#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ -#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ -#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ -#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ -#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ -#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ -#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ -#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ -#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ -#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ -#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ -#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ -#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -/* Register Set (82542) - * - * Some of the 82542 registers are located at different offsets than they are - * in more current versions of the 8254x. Despite the difference in location, - * the registers function in the same manner. - */ -#define E1000_82542_CTRL E1000_CTRL -#define E1000_82542_CTRL_DUP E1000_CTRL_DUP -#define E1000_82542_STATUS E1000_STATUS -#define E1000_82542_EECD E1000_EECD -#define E1000_82542_EERD E1000_EERD -#define E1000_82542_CTRL_EXT E1000_CTRL_EXT -#define E1000_82542_FLA E1000_FLA -#define E1000_82542_MDIC E1000_MDIC -#define E1000_82542_FCAL E1000_FCAL -#define E1000_82542_FCAH E1000_FCAH -#define E1000_82542_FCT E1000_FCT -#define E1000_82542_VET E1000_VET -#define E1000_82542_RA 0x00040 -#define E1000_82542_ICR E1000_ICR -#define E1000_82542_ITR E1000_ITR -#define E1000_82542_ICS E1000_ICS -#define E1000_82542_IMS E1000_IMS -#define E1000_82542_IMC E1000_IMC -#define E1000_82542_RCTL E1000_RCTL -#define E1000_82542_RDTR 0x00108 -#define E1000_82542_RDBAL 0x00110 -#define E1000_82542_RDBAH 0x00114 -#define E1000_82542_RDLEN 0x00118 -#define E1000_82542_RDH 0x00120 -#define E1000_82542_RDT 0x00128 -#define E1000_82542_FCRTH 0x00160 -#define E1000_82542_FCRTL 0x00168 -#define E1000_82542_FCTTV E1000_FCTTV -#define E1000_82542_TXCW E1000_TXCW -#define E1000_82542_RXCW E1000_RXCW -#define E1000_82542_MTA 0x00200 -#define E1000_82542_TCTL E1000_TCTL -#define E1000_82542_TIPG E1000_TIPG -#define E1000_82542_TDBAL 0x00420 -#define E1000_82542_TDBAH 0x00424 -#define E1000_82542_TDLEN 0x00428 -#define E1000_82542_TDH 0x00430 -#define E1000_82542_TDT 0x00438 -#define E1000_82542_TIDV 0x00440 -#define E1000_82542_TBT E1000_TBT -#define E1000_82542_AIT E1000_AIT -#define E1000_82542_VFTA 0x00600 -#define E1000_82542_LEDCTL E1000_LEDCTL -#define E1000_82542_PBA E1000_PBA -#define E1000_82542_RXDCTL E1000_RXDCTL -#define E1000_82542_RADV E1000_RADV -#define E1000_82542_RSRPD E1000_RSRPD -#define E1000_82542_TXDMAC E1000_TXDMAC -#define E1000_82542_TDFHS E1000_TDFHS -#define E1000_82542_TDFTS E1000_TDFTS -#define E1000_82542_TDFPC E1000_TDFPC -#define E1000_82542_TXDCTL E1000_TXDCTL -#define E1000_82542_TADV E1000_TADV -#define E1000_82542_TSPMT E1000_TSPMT -#define E1000_82542_CRCERRS E1000_CRCERRS -#define E1000_82542_ALGNERRC E1000_ALGNERRC -#define E1000_82542_SYMERRS E1000_SYMERRS -#define E1000_82542_RXERRC E1000_RXERRC -#define E1000_82542_MPC E1000_MPC -#define E1000_82542_SCC E1000_SCC -#define E1000_82542_ECOL E1000_ECOL -#define E1000_82542_MCC E1000_MCC -#define E1000_82542_LATECOL E1000_LATECOL -#define E1000_82542_COLC E1000_COLC -#define E1000_82542_DC E1000_DC -#define E1000_82542_TNCRS E1000_TNCRS -#define E1000_82542_SEC E1000_SEC -#define E1000_82542_CEXTERR E1000_CEXTERR -#define E1000_82542_RLEC E1000_RLEC -#define E1000_82542_XONRXC E1000_XONRXC -#define E1000_82542_XONTXC E1000_XONTXC -#define E1000_82542_XOFFRXC E1000_XOFFRXC -#define E1000_82542_XOFFTXC E1000_XOFFTXC -#define E1000_82542_FCRUC E1000_FCRUC -#define E1000_82542_PRC64 E1000_PRC64 -#define E1000_82542_PRC127 E1000_PRC127 -#define E1000_82542_PRC255 E1000_PRC255 -#define E1000_82542_PRC511 E1000_PRC511 -#define E1000_82542_PRC1023 E1000_PRC1023 -#define E1000_82542_PRC1522 E1000_PRC1522 -#define E1000_82542_GPRC E1000_GPRC -#define E1000_82542_BPRC E1000_BPRC -#define E1000_82542_MPRC E1000_MPRC -#define E1000_82542_GPTC E1000_GPTC -#define E1000_82542_GORCL E1000_GORCL -#define E1000_82542_GORCH E1000_GORCH -#define E1000_82542_GOTCL E1000_GOTCL -#define E1000_82542_GOTCH E1000_GOTCH -#define E1000_82542_RNBC E1000_RNBC -#define E1000_82542_RUC E1000_RUC -#define E1000_82542_RFC E1000_RFC -#define E1000_82542_ROC E1000_ROC -#define E1000_82542_RJC E1000_RJC -#define E1000_82542_MGTPRC E1000_MGTPRC -#define E1000_82542_MGTPDC E1000_MGTPDC -#define E1000_82542_MGTPTC E1000_MGTPTC -#define E1000_82542_TORL E1000_TORL -#define E1000_82542_TORH E1000_TORH -#define E1000_82542_TOTL E1000_TOTL -#define E1000_82542_TOTH E1000_TOTH -#define E1000_82542_TPR E1000_TPR -#define E1000_82542_TPT E1000_TPT -#define E1000_82542_PTC64 E1000_PTC64 -#define E1000_82542_PTC127 E1000_PTC127 -#define E1000_82542_PTC255 E1000_PTC255 -#define E1000_82542_PTC511 E1000_PTC511 -#define E1000_82542_PTC1023 E1000_PTC1023 -#define E1000_82542_PTC1522 E1000_PTC1522 -#define E1000_82542_MPTC E1000_MPTC -#define E1000_82542_BPTC E1000_BPTC -#define E1000_82542_TSCTC E1000_TSCTC -#define E1000_82542_TSCTFC E1000_TSCTFC -#define E1000_82542_RXCSUM E1000_RXCSUM -#define E1000_82542_WUC E1000_WUC -#define E1000_82542_WUFC E1000_WUFC -#define E1000_82542_WUS E1000_WUS -#define E1000_82542_MANC E1000_MANC -#define E1000_82542_IPAV E1000_IPAV -#define E1000_82542_IP4AT E1000_IP4AT -#define E1000_82542_IP6AT E1000_IP6AT -#define E1000_82542_WUPL E1000_WUPL -#define E1000_82542_WUPM E1000_WUPM -#define E1000_82542_FFLT E1000_FFLT -#define E1000_82542_TDFH 0x08010 -#define E1000_82542_TDFT 0x08018 -#define E1000_82542_FFMT E1000_FFMT -#define E1000_82542_FFVT E1000_FFVT - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - uint64_t crcerrs; - uint64_t algnerrc; - uint64_t symerrs; - uint64_t rxerrc; - uint64_t mpc; - uint64_t scc; - uint64_t ecol; - uint64_t mcc; - uint64_t latecol; - uint64_t colc; - uint64_t dc; - uint64_t tncrs; - uint64_t sec; - uint64_t cexterr; - uint64_t rlec; - uint64_t xonrxc; - uint64_t xontxc; - uint64_t xoffrxc; - uint64_t xofftxc; - uint64_t fcruc; - uint64_t prc64; - uint64_t prc127; - uint64_t prc255; - uint64_t prc511; - uint64_t prc1023; - uint64_t prc1522; - uint64_t gprc; - uint64_t bprc; - uint64_t mprc; - uint64_t gptc; - uint64_t gorcl; - uint64_t gorch; - uint64_t gotcl; - uint64_t gotch; - uint64_t rnbc; - uint64_t ruc; - uint64_t rfc; - uint64_t roc; - uint64_t rjc; - uint64_t mgprc; - uint64_t mgpdc; - uint64_t mgptc; - uint64_t torl; - uint64_t torh; - uint64_t totl; - uint64_t toth; - uint64_t tpr; - uint64_t tpt; - uint64_t ptc64; - uint64_t ptc127; - uint64_t ptc255; - uint64_t ptc511; - uint64_t ptc1023; - uint64_t ptc1522; - uint64_t mptc; - uint64_t bptc; - uint64_t tsctc; - uint64_t tsctfc; -}; - -/* Structure containing variables used by the shared code (e1000_hw.c) */ -struct e1000_hw { - struct pci_device *pdev; - uint8_t *hw_addr; - e1000_mac_type mac_type; - e1000_phy_type phy_type; -#if 0 - uint32_t phy_init_script; -#endif - e1000_media_type media_type; - e1000_fc_type fc; -#if 0 - e1000_bus_speed bus_speed; - e1000_bus_width bus_width; - e1000_bus_type bus_type; -#endif - struct e1000_eeprom_info eeprom; -#if 0 - e1000_ms_type master_slave; - e1000_ms_type original_master_slave; - e1000_ffe_config ffe_config_state; -#endif - uint32_t io_base; - uint32_t phy_id; -#ifdef LINUX_DRIVER - uint32_t phy_revision; -#endif - uint32_t phy_addr; -#if 0 - uint32_t original_fc; -#endif - uint32_t txcw; - uint32_t autoneg_failed; -#if 0 - uint32_t max_frame_size; - uint32_t min_frame_size; - uint32_t mc_filter_type; - uint32_t num_mc_addrs; - uint32_t collision_delta; - uint32_t tx_packet_delta; - uint32_t ledctl_default; - uint32_t ledctl_mode1; - uint32_t ledctl_mode2; - uint16_t phy_spd_default; -#endif - uint16_t autoneg_advertised; - uint16_t pci_cmd_word; -#if 0 - uint16_t fc_high_water; - uint16_t fc_low_water; - uint16_t fc_pause_time; - uint16_t current_ifs_val; - uint16_t ifs_min_val; - uint16_t ifs_max_val; - uint16_t ifs_step_size; - uint16_t ifs_ratio; -#endif - uint16_t device_id; - uint16_t vendor_id; -#if 0 - uint16_t subsystem_id; - uint16_t subsystem_vendor_id; -#endif - uint8_t revision_id; -#if 0 - uint8_t autoneg; - uint8_t mdix; - uint8_t forced_speed_duplex; - uint8_t wait_autoneg_complete; - uint8_t dma_fairness; -#endif - uint8_t mac_addr[NODE_ADDRESS_SIZE]; -#if 0 - uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; - boolean_t disable_polarity_correction; - boolean_t speed_downgraded; - e1000_dsp_config dsp_config_state; - boolean_t get_link_status; - boolean_t serdes_link_down; -#endif - boolean_t tbi_compatibility_en; - boolean_t tbi_compatibility_on; -#if 0 - boolean_t phy_reset_disable; - boolean_t fc_send_xon; - boolean_t fc_strict_ieee; - boolean_t report_tx_early; - boolean_t adaptive_ifs; - boolean_t ifs_params_forced; - boolean_t in_ifs_mode; -#endif -}; - - -#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ -#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ - -/* Register Bit Masks */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ - -/* Constants used to intrepret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ - -/* EEPROM/Flash Control */ -#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ -#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ -#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ -#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ -#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type - * (0-small, 1-large) */ -#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_EEPROM_GRANT_ATTEMPTS -#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ -#endif - -/* EEPROM Read */ -#define E1000_EERD_START 0x00000001 /* Start Read */ -#define E1000_EERD_DONE 0x00000010 /* Read Done */ -#define E1000_EERD_ADDR_SHIFT 8 -#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ -#define E1000_EERD_DATA_SHIFT 16 -#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ - -/* SPI EEPROM Status Register */ -#define EEPROM_STATUS_RDY_SPI 0x01 -#define EEPROM_STATUS_WEN_SPI 0x02 -#define EEPROM_STATUS_BP0_SPI 0x04 -#define EEPROM_STATUS_BP1_SPI 0x08 -#define EEPROM_STATUS_WPEN_SPI 0x80 - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ -#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Receive Address */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD - -/* Interrupt Mask Clear */ -#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMC_SRPD E1000_ICR_SRPD - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ - -/* Receive Descriptor */ -#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ -#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ -#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ -#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ -#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Receive Descriptor Control */ -#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ -#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ -#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ -#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ -#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ -#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ -#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ -#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ -#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ -#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ -#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ -#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ -#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ -#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ -#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery - * Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -#define E1000_MDALIGN 4096 - -/* EEPROM Commands - Microwire */ -#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ -#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ -#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ -#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ - -/* EEPROM Commands - SPI */ -#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */ -#define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */ -#define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */ -#define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */ -#define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */ -#define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */ - -/* EEPROM Size definitions */ -#define EEPROM_SIZE_16KB 0x1800 -#define EEPROM_SIZE_8KB 0x1400 -#define EEPROM_SIZE_4KB 0x1000 -#define EEPROM_SIZE_2KB 0x0C00 -#define EEPROM_SIZE_1KB 0x0800 -#define EEPROM_SIZE_512B 0x0400 -#define EEPROM_SIZE_128B 0x0000 -#define EEPROM_SIZE_MASK 0x1C00 - -/* EEPROM Word Offsets */ -#define EEPROM_COMPAT 0x0003 -#define EEPROM_ID_LED_SETTINGS 0x0004 -#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ -#define EEPROM_INIT_CONTROL1_REG 0x000A -#define EEPROM_INIT_CONTROL2_REG 0x000F -#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 -#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 -#define EEPROM_CFG 0x0012 -#define EEPROM_FLASH_VERSION 0x0032 -#define EEPROM_CHECKSUM_REG 0x003F - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - - -/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ -#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F - -/* Mask bits for fields in Word 0x0a of the EEPROM */ -#define EEPROM_WORD0A_ILOS 0x0010 -#define EEPROM_WORD0A_SWDPIO 0x01E0 -#define EEPROM_WORD0A_LRST 0x0200 -#define EEPROM_WORD0A_FD 0x0400 -#define EEPROM_WORD0A_66MHZ 0x0800 - -/* Mask bits for fields in Word 0x0f of the EEPROM */ -#define EEPROM_WORD0F_PAUSE_MASK 0x3000 -#define EEPROM_WORD0F_PAUSE 0x1000 -#define EEPROM_WORD0F_ASM_DIR 0x2000 -#define EEPROM_WORD0F_ANE 0x0800 -#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 - -/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ -#define EEPROM_SUM 0xBABA - -/* EEPROM Map defines (WORD OFFSETS)*/ -#define EEPROM_NODE_ADDRESS_BYTE_0 0 -#define EEPROM_PBA_BYTE_1 8 - -#define EEPROM_RESERVED_WORD 0xFFFF - -/* EEPROM Map Sizes (Byte Counts) */ -#define PBA_SIZE 4 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 16 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 64 -#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_COLD_SHIFT 12 - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define E1000_TIPG_IPGR2_SHIFT 20 - -#define E1000_TXDMAC_DPP 0x00000001 - -/* Adaptive IFS defines */ -#define TX_THRESHOLD_START 8 -#define TX_THRESHOLD_INCREMENT 10 -#define TX_THRESHOLD_DECREMENT 1 -#define TX_THRESHOLD_STOP 190 -#define TX_THRESHOLD_DISABLE 0 -#define TX_THRESHOLD_TIMER_MS 10000 -#define MIN_NUM_XMITS 1000 -#define IFS_MAX 80 -#define IFS_STEP 10 -#define IFS_MIN 40 -#define IFS_RATIO 4 - -/* PBA constants */ -#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_30K 0x001E -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* The historical defaults for the flow control values are given below. */ -#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ -#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ -#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ - -/* PCIX Config space */ -#define PCIX_COMMAND_REGISTER 0xE6 -#define PCIX_STATUS_REGISTER_LO 0xE8 -#define PCIX_STATUS_REGISTER_HI 0xEA - -#define PCIX_COMMAND_MMRBC_MASK 0x000C -#define PCIX_COMMAND_MMRBC_SHIFT 0x2 -#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 -#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 -#define PCIX_STATUS_HI_MMRBC_4K 0x3 -#define PCIX_STATUS_HI_MMRBC_2K 0x2 - - -/* Number of bits required to shift right the "pause" bits from the - * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. - */ -#define PAUSE_SHIFT 5 - -/* Number of bits required to shift left the "SWDPIO" bits from the - * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. - */ -#define SWDPIO_SHIFT 17 - -/* Number of bits required to shift left the "SWDPIO_EXT" bits from the - * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. - */ -#define SWDPIO__EXT_SHIFT 4 - -/* Number of bits required to shift left the "ILOS" bit from the EEPROM - * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. - */ -#define ILOS_SHIFT 3 - - -#define RECEIVE_BUFFER_ALIGN_SIZE (256) - -/* Number of milliseconds we wait for auto-negotiation to complete */ -#define LINK_UP_TIMEOUT 500 - -#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -/* TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the RX descriptor with EOP set - * error = the 8 bit error field of the RX descriptor with EOP set - * length = the sum of all the length fields of the RX descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = TRUE; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = FALSE; - * } - * ... - */ - -#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ - ((adapter)->tbi_compatibility_on && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= ((adapter)->max_frame_size + 1))) : \ - (((length) > (adapter)->min_frame_size) && \ - ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) - - -/* Structures, enums, and macros for the PHY */ - -/* Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CTRL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Regiser */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -#define IGP01E1000_IEEE_REGS_PAGE 0x0000 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 -#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ - -/* IGP01E1000 AGC Registers - stores the cable length values*/ -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -/* IGP01E1000 DSP Reset Register */ -#define IGP01E1000_PHY_DSP_RESET 0x1F33 -#define IGP01E1000_PHY_DSP_SET 0x1F71 -#define IGP01E1000_PHY_DSP_FFE 0x1F35 - -#define IGP01E1000_PHY_CHANNEL_NUM 4 -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 -#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 -#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 - -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A -/* IGP01E1000 PCS Initialization register - stores the polarity status when - * speed = 1000 Mbps. */ -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 - -#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 - -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF /*Registers that are equal on all pages*/ -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ - -/* Next Page TX Register */ -#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* Link Partner Next Page Register */ -#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ -#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ -#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 -#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 - -/* Extended Status Register */ -#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ -#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ -#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ -#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ - -#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ -#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ - -#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ - /* (0=enable, 1=disable) */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, - * 0=CLK125 toggling - */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, - * 100BASE-TX/10BASE-T: - * MDI Mode - */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled - * all speeds. - */ -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 - /* 1=Enable Extended 10BASE-T distance - * (Lower 10BASE-T RX Threshold) - * 0=Normal 10BASE-T RX Threshold */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 - /* 1=5-Bit interface in 100BASE-TX - * 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 -#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; - * 3=110-140M;4=>140M */ -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 -#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 -#define M88E1000_PSSR_MDIX_SHIFT 6 -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* IGP01E1000 Specific Port Config Register - R/W */ -#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 -#define IGP01E1000_PSCFR_PRE_EN 0x0020 -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 -#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 -#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 -#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 - -/* IGP01E1000 Specific Port Status Register - R/O */ -#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C -#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 -#define IGP01E1000_PSSR_LINK_UP 0x0400 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ -#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 -#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 -#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ -#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ - -/* IGP01E1000 Specific Port Control Register - R/W */ -#define IGP01E1000_PSCR_TP_LOOPBACK 0x0001 -#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 -#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 -#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ - -/* IGP01E1000 Specific Port Link Health Register */ -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 -#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 -#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ -#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_0 0x0100 -#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0010 -#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0008 -#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0004 -#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0002 -#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0001 -#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0000 - -/* IGP01E1000 Channel Quality Register */ -#define IGP01E1000_MSE_CHANNEL_D 0x000F -#define IGP01E1000_MSE_CHANNEL_C 0x00F0 -#define IGP01E1000_MSE_CHANNEL_B 0x0F00 -#define IGP01E1000_MSE_CHANNEL_A 0xF000 - -/* IGP01E1000 DSP reset macros */ -#define DSP_RESET_ENABLE 0x0 -#define DSP_RESET_DISABLE 0x2 -#define E1000_MAX_DSP_RESETS 10 - -/* IGP01E1000 AGC Registers */ - -#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ - -/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ -#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 - -/* The precision of the length is +/- 10 meters */ -#define IGP01E1000_AGC_RANGE 10 - -/* IGP01E1000 PCS Initialization register */ -/* bits 3:6 in the PCS registers stores the channels polarity */ -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -/* IGP01E1000 GMII FIFO Register */ -#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed - * on Link-Up */ -#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ - -/* IGP01E1000 Analog Register */ -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 - -/* Bit definitions for valid PHY IDs. */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID -#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID -#define M88E1011_I_REV_4 0x04 - -/* Miscellaneous PHY bit definitions. */ -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_SOF 0x01 -#define PHY_OP_READ 0x02 -#define PHY_OP_WRITE 0x01 -#define PHY_TURNAROUND 0x02 -#define PHY_PREAMBLE_SIZE 32 -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 -#define E1000_PHY_ADDRESS 0x01 -#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ -#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ -#define REG4_SPEED_MASK 0x01E0 -#define REG9_SPEED_MASK 0x0300 -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 -#define ADVERTISE_1000_FULL 0x0020 -#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ -#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ -#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ - -#endif /* _E1000_HW_H_ */