david/ipxe
david
/
ipxe
Archived
1
0
Fork 0

Rewrote to use the new net driver API, the updated PCI API, and the

generic three-wire serial device support for EEPROM access.
This commit is contained in:
Michael Brown 2006-05-27 13:45:14 +00:00
parent 69b1f24a97
commit 70ef6dbb7c
1 changed files with 379 additions and 323 deletions

View File

@ -17,6 +17,10 @@
/*********************************************************************/
/*
27 May 2006 mcb30@users.sourceforge.net (Michael Brown)
Rewrote to use the new net driver API, the updated PCI API, and
the generic three-wire serial device support for EEPROM access.
28 Dec 2002 ken_yap@users.sourceforge.net (Ken Yap)
Put in virt_to_bus calls to allow Etherboot relocation.
@ -62,26 +66,47 @@
*/
#include "etherboot.h"
#include "nic.h"
#include <io.h>
#include <errno.h>
#include <vsprintf.h>
#include <timer.h>
#include <malloc.h>
#include <byteswap.h>
#include <gpxe/pci.h>
#include "timer.h"
#include <gpxe/if_ether.h>
#include <gpxe/ethernet.h>
#include <gpxe/pkbuff.h>
#include <gpxe/netdevice.h>
#include <gpxe/nvs/threewire.h>
#define RTL_TIMEOUT (1*TICKS_PER_SEC)
#define TX_RING_SIZE 4
/* PCI Tuning Parameters
Threshold is bytes transferred to chip before transmission starts. */
#define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */
#define RX_FIFO_THRESH 4 /* Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 bytes */
#define TX_DMA_BURST 4 /* Calculate as 16<<val. */
#define NUM_TX_DESC 4 /* Number of Tx descriptor registers. */
#define TX_BUF_SIZE ETH_FRAME_LEN /* FCS is added by the chip */
#define RX_BUF_LEN_IDX 0 /* 0, 1, 2 is allowed - 8,16,32K rx buffer */
#define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX)
struct rtl8139_tx {
unsigned int next;
struct pk_buff *pkb[TX_RING_SIZE];
};
#undef DEBUG_TX
#undef DEBUG_RX
struct rtl8139_rx {
void *ring;
unsigned int offset;
};
struct rtl8139_nic {
struct threewire eeprom;
unsigned short ioaddr;
struct rtl8139_tx tx;
struct rtl8139_rx rx;
};
/* Tuning Parameters */
#define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */
#define RX_FIFO_THRESH 4 /* Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 bytes */
#define TX_DMA_BURST 4 /* Calculate as 16<<val. */
#define TX_IPG 3 /* This is the only valid value */
#define RX_BUF_LEN_IDX 0 /* 0, 1, 2 is allowed - 8,16,32K rx buffer */
#define RX_BUF_LEN ( (8192 << RX_BUF_LEN_IDX) )
#define RX_BUF_PAD 4
/* Symbolic offsets to registers. */
enum RTL8139_registers {
@ -159,327 +184,300 @@ enum CSCRBits {
CSCR_LinkDownCmd=0x0f3c0,
};
/* Bits in RxConfig. */
enum rx_mode_bits {
enum RxConfigBits {
RxCfgWrap=0x80,
Eeprom9356=0x40,
AcceptErr=0x20, AcceptRunt=0x10, AcceptBroadcast=0x08,
AcceptMulticast=0x04, AcceptMyPhys=0x02, AcceptAllPhys=0x01,
};
static unsigned int cur_rx,cur_tx;
/* EEPROM access */
#define EE_MODE_PROGRAM 0x80
#define EE_MODE_NORMAL 0x00
#define EE_CS 0x08 /* EEPROM chip select */
#define EE_SK 0x04 /* EEPROM shift clock */
#define EE_DI 0x02 /* Data in */
#define EE_DO 0x01 /* Data out */
/* The RTL8139 can only transmit from a contiguous, aligned memory block. */
struct {
unsigned char tx_buffer[TX_BUF_SIZE] __attribute__((aligned(4)));
unsigned char rx_ring[RX_BUF_LEN+16] __attribute__((aligned(4)));
} rtl8139_bufs __shared;
#define tx_buffer rtl8139_bufs.tx_buffer
#define rx_ring rtl8139_bufs.rx_ring
/* Offsets within EEPROM (these are word offsets) */
#define EE_MAC 7
static int rtl8139_probe(struct nic *nic,struct pci_device *pci);
static int read_eeprom(struct nic *nic, int location, int addr_len);
static void rtl_reset(struct nic *nic);
static void rtl_transmit(struct nic *nic, const char *destaddr,
unsigned int type, unsigned int len, const char *data);
static int rtl_poll(struct nic *nic, int retrieve);
static void rtl_disable(struct nic *nic, struct pci_device *pci);
static void rtl_irq(struct nic *nic, irq_action_t action);
static struct nic_operations rtl_operations;
static struct pci_driver rtl8139_driver;
static inline struct rtl8139_nic * three_to_rtl ( struct threewire *three ) {
return container_of ( three, struct rtl8139_nic, eeprom );
}
static int rtl8139_probe ( struct nic *nic, struct pci_device *pci ) {
static void rtl_setcs ( struct threewire *three, int cs ) {
struct rtl8139_nic *rtl = three_to_rtl ( three );
unsigned int eereg;
eereg = cs ? ( EE_MODE_PROGRAM | EE_CS ) : ( EE_MODE_NORMAL );
outb ( eereg, rtl->ioaddr + Cfg9346 );
}
static void rtl_setsk ( struct threewire *three, int sk ) {
struct rtl8139_nic *rtl = three_to_rtl ( three );
unsigned int eereg;
eereg = inb ( rtl->ioaddr + Cfg9346 );
eereg = ( eereg & ~EE_SK ) | ( sk ? EE_SK : 0 );
outb ( eereg, rtl->ioaddr + Cfg9346 );
}
static void rtl_setdi ( struct threewire *three, int di ) {
struct rtl8139_nic *rtl = three_to_rtl ( three );
unsigned int eereg;
eereg = inb ( rtl->ioaddr + Cfg9346 );
eereg = ( eereg & ~EE_DI ) | ( di ? EE_DI : 0 );
outb ( eereg, rtl->ioaddr + Cfg9346 );
}
static int rtl_getdo ( struct threewire *three ) {
struct rtl8139_nic *rtl = three_to_rtl ( three );
unsigned int eereg;
eereg = ( inb ( rtl->ioaddr + Cfg9346 ) & EE_DO );
return eereg;
}
static struct threewire_operations rtl_three_ops = {
.setcs = rtl_setcs,
.setsk = rtl_setsk,
.setdi = rtl_setdi,
.getdo = rtl_getdo,
};
/**
* Set up for EEPROM access
*
* @v rtl RTL8139 NIC
*/
static void rtl_init_eeprom ( struct rtl8139_nic *rtl ) {
int ee9356;
ee9356 = ( inw ( rtl->ioaddr + RxConfig ) & Eeprom9356 );
DBG ( "EEPROM is an %s\n", ee9356 ? "AT93C56" : "AT93C46" );
rtl->eeprom.ops = &rtl_three_ops;
rtl->eeprom.adrsize =
( ee9356 ? AT93C56_ORG16_ADRSIZE : AT93C46_ORG16_ADRSIZE );
rtl->eeprom.datasize =
( ee9356 ? AT93C56_ORG16_DATASIZE : AT93C46_ORG16_DATASIZE );
rtl->eeprom.udelay = 1;
}
/**
* Read the MAC address
*
* @v rtl RTL8139 NIC
* @v mac_addr Buffer to contain MAC address (ETH_ALEN bytes)
*/
static void rtl_read_mac ( struct rtl8139_nic *rtl, uint8_t *mac_addr ) {
union {
uint16_t word;
uint8_t bytes[2];
} u;
int i;
int speed10, fullduplex;
int addr_len;
unsigned short *ap = (unsigned short*)nic->node_addr;
/* Copy ioaddr and IRQ from PCI information */
pci_fill_nic ( nic, pci );
nic->ioaddr = pci->ioaddr;
nic->irqno = pci->irq;
adjust_pci_device(pci);
/* Bring the chip out of low-power mode. */
outb(0x00, nic->ioaddr + Config1);
addr_len = read_eeprom(nic,0,8) == 0x8129 ? 8 : 6;
for (i = 0; i < 3; i++)
*ap++ = read_eeprom(nic,i + 7,addr_len);
rtl_reset(nic);
speed10 = inb(nic->ioaddr + MediaStatus) & MSRSpeed10;
nic->mbps = speed10 ? 10 : 100;
fullduplex = inw(nic->ioaddr + MII_BMCR) & BMCRDuplex;
nic->duplex = fullduplex ? FULL_DUPLEX : HALF_DUPLEX;
nic->nic_op = &rtl_operations;
return 1;
}
/* Serial EEPROM section. */
/* EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
#define EE_CS 0x08 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
#define EE_WRITE_0 0x00
#define EE_WRITE_1 0x02
#define EE_DATA_READ 0x01 /* EEPROM chip data out. */
#define EE_ENB (0x80 | EE_CS)
/*
Delay between EEPROM clock transitions.
No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
*/
#define eeprom_delay() inl(ee_addr)
/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD (5)
#define EE_READ_CMD (6)
#define EE_ERASE_CMD (7)
static int read_eeprom(struct nic *nic, int location, int addr_len)
{
int i;
unsigned int retval = 0;
long ee_addr = nic->ioaddr + Cfg9346;
int read_cmd = location | (EE_READ_CMD << addr_len);
outb(EE_ENB & ~EE_CS, ee_addr);
outb(EE_ENB, ee_addr);
eeprom_delay();
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
outb(EE_ENB | dataval, ee_addr);
eeprom_delay();
outb(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
}
outb(EE_ENB, ee_addr);
eeprom_delay();
for (i = 16; i > 0; i--) {
outb(EE_ENB | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inb(ee_addr) & EE_DATA_READ) ? 1 : 0);
outb(EE_ENB, ee_addr);
eeprom_delay();
}
/* Terminate the EEPROM access. */
outb(~EE_CS, ee_addr);
eeprom_delay();
return retval;
}
static const unsigned int rtl8139_rx_config =
(RX_BUF_LEN_IDX << 11) |
(RX_FIFO_THRESH << 13) |
(RX_DMA_BURST << 8);
static void set_rx_mode(struct nic *nic) {
unsigned int mc_filter[2];
int rx_mode;
/* !IFF_PROMISC */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
outl(rtl8139_rx_config | rx_mode, nic->ioaddr + RxConfig);
outl(mc_filter[0], nic->ioaddr + MAR0 + 0);
outl(mc_filter[1], nic->ioaddr + MAR0 + 4);
}
static int rtl_connect ( struct nic *nic ) {
if (inb(nic->ioaddr + MediaStatus) & MSRLinkFail) {
printf("Cable not connected or other link failure\n");
return 0;
DBG ( "MAC address is " );
for ( i = 0 ; i < ( ETH_ALEN / 2 ) ; i++ ) {
u.word = cpu_to_le16 ( threewire_read ( &rtl->eeprom,
EE_MAC + i ) );
*mac_addr++ = u.bytes[0];
*mac_addr++ = u.bytes[1];
DBG ( "%02x%02x", u.bytes[0], u.bytes[1] );
}
return 1;
DBG ( "\n" );
}
static void rtl_reset(struct nic* nic)
{
/**
* Reset NIC
*
* @v rtl RTL8139 NIC
*
* Issues a hardware reset and waits for the reset to complete.
*/
static void rtl_reset ( struct rtl8139_nic *rtl ) {
/* Reset chip */
outb ( CmdReset, rtl->ioaddr + ChipCmd );
mdelay ( 10 );
rtl->tx.next = 0;
rtl->rx.offset = 0;
}
/**
* Open NIC
*
* @v netdev Net device
* @ret rc Return status code
*/
static int rtl_open ( struct net_device *netdev ) {
struct rtl8139_nic *rtl = netdev->priv;
int i;
outb(CmdReset, nic->ioaddr + ChipCmd);
/* Program the MAC address */
for ( i = 0 ; i < ETH_ALEN ; i++ )
outb ( netdev->ll_addr[i], rtl->ioaddr + MAC0 + i );
cur_rx = 0;
cur_tx = 0;
/* Set up RX ring */
rtl->rx.ring = malloc ( RX_BUF_LEN + RX_BUF_PAD );
if ( ! rtl->rx.ring )
return -ENOMEM;
outl ( virt_to_bus ( rtl->rx.ring ), rtl->ioaddr + RxBuf );
DBG ( "RX ring at %lx\n", virt_to_bus ( rtl->rx.ring ) );
/* Give the chip 10ms to finish the reset. */
load_timer2(10*TICKS_PER_MS);
while ((inb(nic->ioaddr + ChipCmd) & CmdReset) != 0 &&
timer2_running())
/* wait */;
/* Enable TX and RX */
outb ( ( CmdRxEnb | CmdTxEnb ), rtl->ioaddr + ChipCmd );
outl ( ( ( RX_FIFO_THRESH << 13 ) | ( RX_BUF_LEN_IDX << 11 ) |
( RX_DMA_BURST << 8 ) | AcceptBroadcast | AcceptMulticast |
AcceptMyPhys ), rtl->ioaddr + RxConfig );
outl ( 0xffffffffUL, rtl->ioaddr + MAR0 + 0 );
outl ( 0xffffffffUL, rtl->ioaddr + MAR0 + 4 );
outl ( ( ( TX_DMA_BURST << 8 ) | ( TX_IPG << 24 ) ),
rtl->ioaddr + TxConfig );
for (i = 0; i < ETH_ALEN; i++)
outb(nic->node_addr[i], nic->ioaddr + MAC0 + i);
/* Must enable Tx/Rx before setting transfer thresholds! */
outb(CmdRxEnb | CmdTxEnb, nic->ioaddr + ChipCmd);
outl((RX_FIFO_THRESH<<13) | (RX_BUF_LEN_IDX<<11) | (RX_DMA_BURST<<8),
nic->ioaddr + RxConfig); /* accept no frames yet! */
outl((TX_DMA_BURST<<8)|0x03000000, nic->ioaddr + TxConfig);
/* The Linux driver changes Config1 here to use a different LED pattern
* for half duplex or full/autodetect duplex (for full/autodetect, the
* outputs are TX/RX, Link10/100, FULL, while for half duplex it uses
* TX/RX, Link100, Link10). This is messy, because it doesn't match
* the inscription on the mounting bracket. It should not be changed
* from the configuration EEPROM default, because the card manufacturer
* should have set that to match the card. */
#ifdef DEBUG_RX
printf("rx ring address is %X\n",(unsigned long)rx_ring);
#endif
outl((unsigned long)virt_to_bus(rx_ring), nic->ioaddr + RxBuf);
/* If we add multicast support, the MAR0 register would have to be
* initialized to 0xffffffffffffffff (two 32 bit accesses). Etherboot
* only needs broadcast (for ARP/RARP/BOOTP/DHCP) and unicast. */
outb(CmdRxEnb | CmdTxEnb, nic->ioaddr + ChipCmd);
outl(rtl8139_rx_config, nic->ioaddr + RxConfig);
/* Start the chip's Tx and Rx process. */
outl(0, nic->ioaddr + RxMissed);
/* set_rx_mode */
set_rx_mode(nic);
/* Disable all known interrupts by setting the interrupt mask. */
outw(0, nic->ioaddr + IntrMask);
return 0;
}
static void rtl_transmit(struct nic *nic, const char *destaddr,
unsigned int type, unsigned int len, const char *data)
{
unsigned int status, to, nstype;
unsigned long txstatus;
/**
* Close NIC
*
* @v netdev Net device
*/
static void rtl_close ( struct net_device *netdev ) {
struct rtl8139_nic *rtl = netdev->priv;
int i;
/* nstype assignment moved up here to avoid gcc 3.0.3 compiler bug */
nstype = htons(type);
memcpy(tx_buffer, destaddr, ETH_ALEN);
memcpy(tx_buffer + ETH_ALEN, nic->node_addr, ETH_ALEN);
memcpy(tx_buffer + 2 * ETH_ALEN, &nstype, 2);
memcpy(tx_buffer + ETH_HLEN, data, len);
/* Reset the hardware to disable everything in one go */
rtl_reset ( rtl );
len += ETH_HLEN;
#ifdef DEBUG_TX
printf("sending %d bytes ethtype %hX\n", len, type);
#endif
/* Free RX ring */
free ( rtl->rx.ring );
rtl->rx.ring = NULL;
/* Note: RTL8139 doesn't auto-pad, send minimum payload (another 4
* bytes are sent automatically for the FCS, totalling to 64 bytes). */
while (len < ETH_ZLEN) {
tx_buffer[len++] = '\0';
}
outl((unsigned long)virt_to_bus(tx_buffer), nic->ioaddr + TxAddr0 + cur_tx*4);
outl(((TX_FIFO_THRESH<<11) & 0x003f0000) | len,
nic->ioaddr + TxStatus0 + cur_tx*4);
to = currticks() + RTL_TIMEOUT;
do {
status = inw(nic->ioaddr + IntrStatus);
/* Only acknlowledge interrupt sources we can properly handle
* here - the RxOverflow/RxFIFOOver MUST be handled in the
* rtl_poll() function. */
outw(status & (TxOK | TxErr | PCIErr), nic->ioaddr + IntrStatus);
if ((status & (TxOK | TxErr | PCIErr)) != 0) break;
} while (currticks() < to);
txstatus = inl(nic->ioaddr+ TxStatus0 + cur_tx*4);
if (status & TxOK) {
cur_tx = (cur_tx + 1) % NUM_TX_DESC;
#ifdef DEBUG_TX
printf("tx done (%d ticks), status %hX txstatus %X\n",
to-currticks(), status, txstatus);
#endif
} else {
#ifdef DEBUG_TX
printf("tx timeout/error (%d ticks), status %hX txstatus %X\n",
currticks()-to, status, txstatus);
#endif
rtl_reset(nic);
/* Free any old TX buffers that hadn't yet completed */
for ( i = 0 ; i < TX_RING_SIZE ; i++ ) {
if ( rtl->tx.pkb[i] ) {
free_pkb ( rtl->tx.pkb[i] );
rtl->tx.pkb[i] = NULL;
DBG ( "TX id %d discarded\n", i );
}
}
}
static int rtl_poll(struct nic *nic, int retrieve)
{
/**
* Transmit packet
*
* @v netdev Network device
* @v pkb Packet buffer
* @ret rc Return status code
*/
static int rtl_transmit ( struct net_device *netdev, struct pk_buff *pkb ) {
struct rtl8139_nic *rtl = netdev->priv;
int align;
int pad_len;
/* Check for space in TX ring */
if ( rtl->tx.pkb[rtl->tx.next] != NULL ) {
printf ( "TX overflow\n" );
free_pkb ( pkb );
return -ENOBUFS;
}
/* Align packet data */
align = ( virt_to_bus ( pkb->data ) & 0x3 );
pkb_push ( pkb, align );
memmove ( pkb->data, pkb->data + align, pkb_len ( pkb ) - align );
pkb_unput ( pkb, align );
/* Pad to minimum packet length */
pad_len = ( ETH_ZLEN - pkb_len ( pkb ) );
if ( pad_len > 0 )
memset ( pkb_put ( pkb, pad_len ), 0, pad_len );
/* Add to TX ring */
DBG ( "TX id %d at %lx+%x\n", rtl->tx.next,
virt_to_bus ( pkb->data ), pkb_len ( pkb ) );
rtl->tx.pkb[rtl->tx.next] = pkb;
outl ( virt_to_bus ( pkb->data ),
rtl->ioaddr + TxAddr0 + 4 * rtl->tx.next );
outl ( ( ( ( TX_FIFO_THRESH & 0x7e0 ) << 11 ) | pkb_len ( pkb ) ),
rtl->ioaddr + TxStatus0 + 4 * rtl->tx.next );
rtl->tx.next = ( rtl->tx.next + 1 ) % TX_RING_SIZE;
return 0;
}
/**
* Poll for received packets
*
* @v netdev Network device
*/
static void rtl_poll ( struct net_device *netdev ) {
struct rtl8139_nic *rtl = netdev->priv;
unsigned int status;
unsigned int ring_offs;
unsigned int rx_size, rx_status;
unsigned int tsad;
unsigned int rx_status;
unsigned int rx_len;
struct pk_buff *rx_pkb;
int wrapped_len;
int i;
if (inb(nic->ioaddr + ChipCmd) & RxBufEmpty) {
return 0;
/* Acknowledge interrupts */
status = inw ( rtl->ioaddr + IntrStatus );
if ( ! status )
return;
outw ( status, rtl->ioaddr + IntrStatus );
/* Handle TX completions */
tsad = inw ( rtl->ioaddr + TxSummary );
for ( i = 0 ; i < TX_RING_SIZE ; i++ ) {
if ( ( rtl->tx.pkb[i] != NULL ) && ( tsad & ( 1 << i ) ) ) {
DBG ( "TX id %d complete\n", i );
free_pkb ( rtl->tx.pkb[i] );
rtl->tx.pkb[i] = NULL;
}
}
/* There is a packet ready */
if ( ! retrieve ) return 1;
/* Handle received packets */
while ( ! ( inw ( rtl->ioaddr + ChipCmd ) & RxBufEmpty ) ) {
rx_status = * ( ( uint16_t * )
( rtl->rx.ring + rtl->rx.offset ) );
rx_len = * ( ( uint16_t * )
( rtl->rx.ring + rtl->rx.offset + 2 ) );
if ( rx_status & RxOK ) {
DBG ( "RX packet at offset %x+%x\n", rtl->rx.offset,
rx_len );
status = inw(nic->ioaddr + IntrStatus);
/* See below for the rest of the interrupt acknowledges. */
outw(status & ~(RxFIFOOver | RxOverflow | RxOK), nic->ioaddr + IntrStatus);
rx_pkb = alloc_pkb ( rx_len );
if ( ! rx_pkb ) {
/* Leave packet for next call to poll() */
break;
}
#ifdef DEBUG_RX
printf("rtl_poll: int %hX ", status);
#endif
wrapped_len = ( ( rtl->rx.offset + 4 + rx_len )
- RX_BUF_LEN );
if ( wrapped_len < 0 )
wrapped_len = 0;
ring_offs = cur_rx % RX_BUF_LEN;
rx_status = *(unsigned int*)(rx_ring + ring_offs);
rx_size = rx_status >> 16;
rx_status &= 0xffff;
memcpy ( pkb_put ( rx_pkb, rx_len - wrapped_len ),
rtl->rx.ring + rtl->rx.offset + 4,
rx_len - wrapped_len );
memcpy ( pkb_put ( rx_pkb, wrapped_len ),
rtl->rx.ring, wrapped_len );
if ((rx_status & (RxBadSymbol|RxRunt|RxTooLong|RxCRCErr|RxBadAlign)) ||
(rx_size < ETH_ZLEN) || (rx_size > ETH_FRAME_LEN + 4)) {
printf("rx error %hX\n", rx_status);
rtl_reset(nic); /* this clears all interrupts still pending */
return 0;
netdev_rx ( netdev, rx_pkb );
} else {
DBG ( "RX bad packet (status %#04x len %d)\n",
rx_status, rx_len );
}
rtl->rx.offset = ( ( ( rtl->rx.offset + 4 + rx_len + 3 ) & ~3 )
% RX_BUF_LEN );
outw ( rtl->rx.offset - 16, rtl->ioaddr + RxBufPtr );
}
/* Received a good packet */
nic->packetlen = rx_size - 4; /* no one cares about the FCS */
if (ring_offs+4+rx_size-4 > RX_BUF_LEN) {
int semi_count = RX_BUF_LEN - ring_offs - 4;
memcpy(nic->packet, rx_ring + ring_offs + 4, semi_count);
memcpy(nic->packet+semi_count, rx_ring, rx_size-4-semi_count);
#ifdef DEBUG_RX
printf("rx packet %d+%d bytes", semi_count,rx_size-4-semi_count);
#endif
} else {
memcpy(nic->packet, rx_ring + ring_offs + 4, nic->packetlen);
#ifdef DEBUG_RX
printf("rx packet %d bytes", rx_size-4);
#endif
}
#ifdef DEBUG_RX
printf(" at %X type %hhX%hhX rxstatus %hX\n",
(unsigned long)(rx_ring+ring_offs+4),
nic->packet[12], nic->packet[13], rx_status);
#endif
cur_rx = (cur_rx + rx_size + 4 + 3) & ~3;
outw(cur_rx - 16, nic->ioaddr + RxBufPtr);
/* See RTL8139 Programming Guide V0.1 for the official handling of
* Rx overflow situations. The document itself contains basically no
* usable information, except for a few exception handling rules. */
outw(status & (RxFIFOOver | RxOverflow | RxOK), nic->ioaddr + IntrStatus);
return 1;
}
#if 0
static void rtl_irq(struct nic *nic, irq_action_t action)
{
unsigned int mask;
@ -489,10 +487,10 @@ static void rtl_irq(struct nic *nic, irq_action_t action)
switch ( action ) {
case DISABLE :
case ENABLE :
mask = inw(nic->ioaddr + IntrMask);
mask = inw(rtl->ioaddr + IntrMask);
mask = mask & ~interested;
if ( action == ENABLE ) mask = mask | interested;
outw(mask, nic->ioaddr + IntrMask);
outw(mask, rtl->ioaddr + IntrMask);
break;
case FORCE :
/* Apparently writing a 1 to this read-only bit of a
@ -501,32 +499,88 @@ static void rtl_irq(struct nic *nic, irq_action_t action)
* not to write a datasheet, read the one for the
* RTL8139...
*/
outb(EROK, nic->ioaddr + RxEarlyStatus);
outb(EROK, rtl->ioaddr + RxEarlyStatus);
break;
}
}
#endif
static void rtl_disable ( struct nic *nic, struct pci_device *pci __unused ) {
nic_disable ( nic );
/* merge reset and disable */
rtl_reset(nic);
/**
* Probe PCI device
*
* @v pci PCI device
* @v id PCI ID
* @ret rc Return status code
*/
static int rtl_probe ( struct pci_device *pci,
const struct pci_device_id *id __unused ) {
struct net_device *netdev;
struct rtl8139_nic *rtl = NULL;
int rc;
/* reset the chip */
outb(CmdReset, nic->ioaddr + ChipCmd);
/* Fix up PCI device */
adjust_pci_device ( pci );
/* 10 ms timeout */
load_timer2(10*TICKS_PER_MS);
while ((inb(nic->ioaddr + ChipCmd) & CmdReset) != 0 && timer2_running())
/* wait */;
/* Allocate net device */
netdev = alloc_etherdev ( sizeof ( *rtl ) );
if ( ! netdev ) {
rc = -ENOMEM;
goto err;
}
rtl = netdev->priv;
pci_set_drvdata ( pci, netdev );
memset ( rtl, 0, sizeof ( *rtl ) );
rtl->ioaddr = pci->ioaddr;
/* Reset the NIC, set up EEPROM access and read MAC address */
rtl_reset ( rtl );
rtl_init_eeprom ( rtl );
rtl_read_mac ( rtl, netdev->ll_addr );
/* Point to NIC specific routines */
// netdev->open = rtl_open;
// netdev->close = rtl_close;
netdev->transmit = rtl_transmit;
netdev->poll = rtl_poll;
/* Register network device */
if ( ( rc = register_netdev ( netdev ) ) != 0 )
goto err;
#warning "Hack alert"
rtl_open ( netdev );
return 0;
err:
/* Disable NIC */
if ( rtl )
rtl_reset ( rtl );
/* Free net device */
free_netdev ( netdev );
return rc;
}
static struct nic_operations rtl_operations = {
.connect = rtl_connect,
.poll = rtl_poll,
.transmit = rtl_transmit,
.irq = rtl_irq,
/**
* Remove PCI device
*
* @v pci PCI device
*/
static void rtl_remove ( struct pci_device *pci ) {
struct net_device *netdev = pci_get_drvdata ( pci );
struct rtl8139_nic *rtl = netdev->priv;
};
#warning "Hack alert"
rtl_close ( netdev );
unregister_netdev ( netdev );
rtl_reset ( rtl );
free_netdev ( netdev );
}
static struct pci_device_id rtl8139_nics[] = {
PCI_ROM(0x10ec, 0x8129, "rtl8129", "Realtek 8129"),
@ -545,7 +599,9 @@ PCI_ROM(0x14ea, 0xab07, "fnw3800tx", "Planex FNW-3800-TX"),
PCI_ROM(0xffff, 0x8139, "clone-rtl8139", "Cloned 8139"),
};
PCI_DRIVER ( rtl8139_driver, rtl8139_nics, PCI_NO_CLASS );
DRIVER ( "RTL8139", nic_driver, pci_driver, rtl8139_driver,
rtl8139_probe, rtl_disable );
struct pci_driver rtl8139_driver __pci_driver = {
.ids = rtl8139_nics,
.id_count = ( sizeof ( rtl8139_nics ) / sizeof ( rtl8139_nics[0] ) ),
.probe = rtl_probe,
.remove = rtl_remove,
};