david/ipxe
david
/
ipxe
Archived
1
0
Fork 0

Tidied up init_heap()

This commit is contained in:
Michael Brown 2005-05-13 11:16:14 +00:00
parent f0d048bf91
commit 42250e9b1a
1 changed files with 60 additions and 73 deletions

View File

@ -8,88 +8,75 @@ struct heap_block {
char data[0]; char data[0];
}; };
size_t heap_ptr, heap_top, heap_bot; /* Linker symbols */
extern char _text[];
extern char _end[];
#define _virt_start 0 static unsigned long heap_start, heap_end, heap_ptr;
static void init_heap(void) /*
{ * Find the largest contiguous area of memory that I can use for the
size_t size; * heap.
size_t start, end; *
unsigned i; */
/* Find the largest contiguous area of memory that static void init_heap ( void ) {
* I can use for the heap, which is organized as unsigned int i;
* a stack that grows backwards through memory. unsigned long eb_start, eb_end;
*/ unsigned long size;
/* If I have virtual address that do not equal physical addresses
* there is a change I will try to use memory from both sides of
* the virtual address space simultaneously, which can cause all kinds
* of interesting problems.
* Avoid it by logically extending etherboot. Once I know that relocation
* works I can just start the virtual address space at 0, and this problem goes
* away so that is probably a better solution.
*/
#if 0
start = virt_to_phys(_text);
#else
/* segment wrap around is nasty don't chance it. */
start = virt_to_phys(_virt_start);
#endif
end = virt_to_phys(_end);
size = 0; size = 0;
for(i = 0; i < meminfo.map_count; i++) {
unsigned long r_start, r_end; /* Region occupied by Etherboot */
if (meminfo.map[i].type != E820_RAM) eb_start = virt_to_phys ( _text );
eb_end = virt_to_phys ( _end );
for ( i = 0 ; i < meminfo.map_count ; i++ ) {
unsigned long r_start, r_end, r_size;
unsigned long pre_eb, post_eb;
/* Get start and end addresses of the region */
if ( meminfo.map[i].type != E820_RAM )
continue; continue;
if (meminfo.map[i].addr > ULONG_MAX) if ( meminfo.map[i].addr > ULONG_MAX )
continue; continue;
if (meminfo.map[i].size > ULONG_MAX)
continue;
r_start = meminfo.map[i].addr; r_start = meminfo.map[i].addr;
r_end = r_start + meminfo.map[i].size; if ( r_start + meminfo.map[i].size > ULONG_MAX ) {
if (r_end < r_start) {
r_end = ULONG_MAX; r_end = ULONG_MAX;
} else {
r_end = r_start + meminfo.map[i].size;
} }
/* Handle areas that overlap etherboot */
if ((end > r_start) && (start < r_end)) { /* Avoid overlap with Etherboot. When Etherboot is
/* Etherboot completely covers the region */ * completely contained within the region, choose the
if ((start <= r_start) && (end >= r_end)) * larger of the two remaining portions.
continue; */
/* Etherboot is completely contained in the region */ if ( ( eb_start < r_end ) && ( eb_end > r_start ) ) {
if ((start > r_start) && (end < r_end)) { pre_eb = ( eb_start > r_start ) ?
/* keep the larger piece */ ( eb_start - r_start ) : 0;
if ((r_end - end) >= (r_start - start)) { post_eb = ( r_end > eb_end ) ?
r_start = end; ( r_end - eb_end ) : 0;
} if ( pre_eb > post_eb ) {
else { r_end = eb_start;
r_end = start; } else {
} r_start = eb_end;
}
/* Etherboot covers one end of the region.
* Shrink the region.
*/
else if (end >= r_end) {
r_end = start;
}
else if (start <= r_start) {
r_start = end;
} }
} }
/* If two areas are the size prefer the greater address */
if (((r_end - r_start) > size) || /* Use the biggest region. Where two regions are the
(((r_end - r_start) == size) && (r_start > heap_top))) { * same size, use the later region. (Provided that
size = r_end - r_start; * the memory map is laid out in a sensible order,
heap_top = r_start; * this should give us the higher region.)
heap_bot = r_end; */
r_size = r_end - r_start;
if ( r_size >= size ) {
heap_start = r_start;
heap_end = r_end;
size = r_size;
} }
} }
if (size == 0) {
printf("init_heap: No heap found.\n"); ASSERT ( size != 0 );
exit(1); heap_ptr = heap_end;
}
heap_ptr = heap_bot;
} }
/* /*
@ -104,7 +91,7 @@ void * emalloc ( size_t size, unsigned int align ) {
addr = ( ( ( heap_ptr - size ) & ~( align - 1 ) ) addr = ( ( ( heap_ptr - size ) & ~( align - 1 ) )
- sizeof ( struct heap_block ) ); - sizeof ( struct heap_block ) );
if ( addr < heap_top ) { if ( addr < heap_start ) {
return NULL; return NULL;
} }
@ -119,7 +106,7 @@ void * emalloc ( size_t size, unsigned int align ) {
* *
*/ */
void * emalloc_all ( size_t *size ) { void * emalloc_all ( size_t *size ) {
*size = heap_ptr - heap_top - sizeof ( struct heap_block ); *size = heap_ptr - heap_start - sizeof ( struct heap_block );
return emalloc ( *size, sizeof ( void * ) ); return emalloc ( *size, sizeof ( void * ) );
} }
@ -136,7 +123,7 @@ void efree ( void *ptr ) {
( ptr - offsetof ( struct heap_block, data ) ); ( ptr - offsetof ( struct heap_block, data ) );
heap_ptr += block->size; heap_ptr += block->size;
ASSERT ( heap_ptr <= heap_bot ); ASSERT ( heap_ptr <= heap_end );
} }
/* /*
@ -144,7 +131,7 @@ void efree ( void *ptr ) {
* *
*/ */
void efree_all ( void ) { void efree_all ( void ) {
heap_ptr = heap_bot; heap_ptr = heap_end;
} }
INIT_FN ( INIT_HEAP, init_heap, efree_all, NULL ); INIT_FN ( INIT_HEAP, init_heap, efree_all, NULL );