david/ipxe
david
/
ipxe
Archived
1
0
Fork 0
This repository has been archived on 2020-12-06. You can view files and clone it, but cannot push or open issues or pull requests.
ipxe/src/core/dummy_sanboot.c

134 lines
3.2 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* Dummy SAN device
*
*/
#include <errno.h>
#include <ipxe/sanboot.h>
/**
* Hook dummy SAN device
*
* @v drive Drive number
* @v uris List of URIs
* @v count Number of URIs
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
* @v flags Flags
* @ret drive Drive number, or negative error
*/
static int dummy_san_hook ( unsigned int drive, struct uri **uris,
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
unsigned int count, unsigned int flags ) {
struct san_device *sandev;
int rc;
/* Allocate SAN device */
sandev = alloc_sandev ( uris, count, 0 );
if ( ! sandev ) {
rc = -ENOMEM;
goto err_alloc;
}
/* Register SAN device */
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
if ( ( rc = register_sandev ( sandev, drive, flags ) ) != 0 ) {
DBGC ( sandev, "SAN %#02x could not register: %s\n",
sandev->drive, strerror ( rc ) );
goto err_register;
}
return drive;
unregister_sandev ( sandev );
err_register:
sandev_put ( sandev );
err_alloc:
return rc;
}
/**
* Unhook dummy SAN device
*
* @v drive Drive number
*/
static void dummy_san_unhook ( unsigned int drive ) {
struct san_device *sandev;
/* Find drive */
sandev = sandev_find ( drive );
if ( ! sandev ) {
DBG ( "SAN %#02x does not exist\n", drive );
return;
}
/* Unregister SAN device */
unregister_sandev ( sandev );
/* Drop reference to drive */
sandev_put ( sandev );
}
/**
* Boot from dummy SAN device
*
* @v drive Drive number
* @v filename Filename (or NULL to use default)
* @ret rc Return status code
*/
static int dummy_san_boot ( unsigned int drive __unused,
const char *filename __unused ) {
return -EOPNOTSUPP;
}
/**
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
* Install ACPI table
*
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
* @v acpi ACPI description header
* @ret rc Return status code
*/
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
static int dummy_install ( struct acpi_header *acpi ) {
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
DBGC ( acpi, "ACPI table %s:\n", acpi_name ( acpi->signature ) );
DBGC_HDA ( acpi, 0, acpi, le32_to_cpu ( acpi->length ) );
return 0;
}
[block] Describe all SAN devices via ACPI tables Describe all SAN devices via ACPI tables such as the iBFT. For tables that can describe only a single device (i.e. the aBFT and sBFT), one table is installed per device. For multi-device tables (i.e. the iBFT), all devices are described in a single table. An underlying SAN device connection may be closed at the time that we need to construct an ACPI table. We therefore introduce the concept of an "ACPI descriptor" which enables the SAN boot code to maintain an opaque pointer to the underlying object, and an "ACPI model" which can build tables from a list of such descriptors. This separates the lifecycles of ACPI descriptions from the lifecycles of the block device interfaces, and allows for construction of the ACPI tables even if the block device interface has been closed. For a multipath SAN device, iPXE will wait until sufficient information is available to describe all devices but will not wait for all paths to connect successfully. For example: with a multipath iSCSI boot iPXE will wait until at least one path has become available and name resolution has completed on all other paths. We do this since the iBFT has to include IP addresses rather than DNS names. We will commence booting without waiting for the inactive paths to either become available or close; this avoids unnecessary boot delays. Note that the Linux kernel will refuse to accept an iBFT with more than two NIC or target structures. We therefore describe only the NICs that are actually required in order to reach the described targets. Any iBFT with at most two targets is therefore guaranteed to describe at most two NICs. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2017-03-27 17:20:34 +02:00
/**
* Describe dummy SAN device
*
* @ret rc Return status code
*/
static int dummy_san_describe ( void ) {
return acpi_install ( dummy_install );
}
PROVIDE_SANBOOT ( dummy, san_hook, dummy_san_hook );
PROVIDE_SANBOOT ( dummy, san_unhook, dummy_san_unhook );
PROVIDE_SANBOOT ( dummy, san_boot, dummy_san_boot );
PROVIDE_SANBOOT ( dummy, san_describe, dummy_san_describe );